Cylinders X and Y are right cylinders with equal volumes. Cylinder X has a height of 5 inches and a radius of 6 inches. Cylinder Y has a height of 9 inches. What is the radius of Cylinder Y, in inches
Cylinders X and Y are right cylinders with equal volumes.
Cylinder X has a height of 5 inches and a radius of 6 inches.
Cylinder Y has a height of 9 inches.
What is the radius of Cylinder Y, in inches
Radius of Cylinder X \(= r_x\)
Height of Cylinder X \(= h_x\)
Radius of Cylinder Y \(= r_y\)
Height of Cylinder Y \(= h_y\)
\(\begin{array}{rclcll} V &=& \pi \cdot r_y^2 \cdot h_y &=& \pi \cdot r_x^2 \cdot h_x \\ && \not{\pi} \cdot r_y^2 \cdot h_y &=& \not{\pi} \cdot r_x^2 \cdot h_x \\ && r_y^2 \cdot h_y &=& r_x^2 \cdot h_x \qquad & | \qquad : h_y\\ && r_y^2 &=& r_x^2 \cdot \frac{ h_x } { h_y } \qquad & | \qquad \sqrt{}\\ && r_y &=& r_x \cdot \sqrt{ \frac{ h_x } { h_y } } \qquad & | \qquad h_x = 5\ in. \qquad h_y = 9\ in. \qquad r_x = 6\ in.\\ && r_y &=& 6\ in. \cdot \sqrt{ \frac{ 5\ in. } { 9\ in. } } \\ && r_y &=& 6 \cdot \sqrt{ \frac{ 5 } { 9 } } \ in.\\ && r_y &=& 6 \cdot \frac{ \sqrt{ 5 } } { 3 } \ in.\\ && r_y &=& 2 \cdot \sqrt{ 5 } \ in.\\ && \mathbf{r_y} &\mathbf{=}& \mathbf{4.472135955 \ in.} \end{array}\)
The formula for the volume of a cylinder is: V = pi · r2 · h (r = radius; h = height)
Cylinder X: V = pi · 62 · 5 ---> V = 180pi
Cylinder Y; V = pi · r2 · 9 ---> V = 9pi · r2
Since the volumes are equal: 180pi = 9pi · r2
Divide both sides by 9pi: 20 = r2
Find the square root: r = sqrt(20) = 4.47 inches (approximately)
Cylinders X and Y are right cylinders with equal volumes.
Cylinder X has a height of 5 inches and a radius of 6 inches.
Cylinder Y has a height of 9 inches.
What is the radius of Cylinder Y, in inches
Radius of Cylinder X \(= r_x\)
Height of Cylinder X \(= h_x\)
Radius of Cylinder Y \(= r_y\)
Height of Cylinder Y \(= h_y\)
\(\begin{array}{rclcll} V &=& \pi \cdot r_y^2 \cdot h_y &=& \pi \cdot r_x^2 \cdot h_x \\ && \not{\pi} \cdot r_y^2 \cdot h_y &=& \not{\pi} \cdot r_x^2 \cdot h_x \\ && r_y^2 \cdot h_y &=& r_x^2 \cdot h_x \qquad & | \qquad : h_y\\ && r_y^2 &=& r_x^2 \cdot \frac{ h_x } { h_y } \qquad & | \qquad \sqrt{}\\ && r_y &=& r_x \cdot \sqrt{ \frac{ h_x } { h_y } } \qquad & | \qquad h_x = 5\ in. \qquad h_y = 9\ in. \qquad r_x = 6\ in.\\ && r_y &=& 6\ in. \cdot \sqrt{ \frac{ 5\ in. } { 9\ in. } } \\ && r_y &=& 6 \cdot \sqrt{ \frac{ 5 } { 9 } } \ in.\\ && r_y &=& 6 \cdot \frac{ \sqrt{ 5 } } { 3 } \ in.\\ && r_y &=& 2 \cdot \sqrt{ 5 } \ in.\\ && \mathbf{r_y} &\mathbf{=}& \mathbf{4.472135955 \ in.} \end{array}\)