+0  
 
0
967
1
avatar

d/dx ((ln(x) + log2 (x))/(tan(x))

 Feb 29, 2016
 #1
avatar+129845 
0

f(x)  =  [ lnx + log2 x ] / [tanx]    =

 

lnx / tanx    +  log2 x / tanx      using the Quotient Rule  on both, we have

 

[ (1/x) * tanx -  lnx * sec^2 x]  / [tan^2 x]     + [ 1 / [x ln 2] * tanx - log2 x * sec^2x] / [tan^2x]  =

 

[ tanx/x - lnx * [tan^2 x + 1] / [tan^2 x]  + ( [ tanx/ [ x ln2] -  log2 x [ 1 + tan^2x] ) / [tan^2 x]  =

 

[ tanx ( 1/x + 1/[ x ln2] )  - [ tan^2x + 1] ( lnx + log2 x ) ] /  [ tan^2 x]  =

 

[ ln 2 + 1] / [ x* ln2 * tanx]  -  [ sec^2x / tan^2x] * (lnx + log2 x)  =

 

[ ln 2 + 1] / [ x* ln2 * tanx]   -  csc^2x * (ln x + log2 x )  =

 

[ln2 + 1]  * cot x  / [x ln 2]  -  csc^2x (ln x + log2 x)

 

 

 

cool cool cool

 Feb 29, 2016

2 Online Users