+0  
 
+5
961
6
avatar+349 

And the winners are...

   1. Guest

   2. Alan

   3. Guest (different from the 1st one...)

Congrats, guys!

 

So anyways...

The question isss:

 

\(\frac{a+a^2+a^3...+a^7}{a^3+a^4+a^5...+a^9}\)

Details:

1. This contest will be done daily

2. The first 3 correct answers win

3. The 3 winners will be in the next question

4. If the amount of correct answers don't reach 3, I will pick the closest answer/s 

 Nov 12, 2015

Best Answer 

 #6
avatar
0

=1/a^2

 Nov 12, 2015
 #1
avatar+118673 
+5

 

Hi Mathhemathh,

 

I am really pleased that you have become a member.  Welcome to our web2.0calc.com  forum.    laugh  

 

This is the sum of a GP over the sum of another GP

Both have a common ratio of a  and both have 7 terms      r=a   and n=7

 

\(\mbox{The sum of a GP } = \frac{T_1(r^n-1)}{r-1}    \)

 

\(answer \\ = \left( \frac{a(a^7-1)}{(a-1)} \right ) \div \left(\frac{a^3 (a^7-1)}{(a-1)} \right)\\ = \left( \frac{a(a^7-1)}{(a-1)} \right ) \times \left(\frac{(a-1)}{a^3 (a^7-1)} \right)\\ =\frac{1}{a^2}\)

 Nov 12, 2015
 #2
avatar
+5

Mathhemathh  ...   What does this mean?

 

3.   The 3 winners will be in the next question

OH I get it, you mean your will give them credit for their answers.    laugh

 Nov 12, 2015
edited by Guest  Nov 12, 2015
edited by Guest  Nov 12, 2015
 #3
avatar+349 
+5

OK, glad you get it! laughlaugh

 Nov 12, 2015
edited by Mathhemathh  Nov 12, 2015
 #4
avatar+349 
+5
 Nov 12, 2015
 #5
avatar+26393 
+5

\(\begin{array}{rcll} \dfrac{a+a^2+a^3+a^4+a^5+a^6+a^7}{a^3+a^4+a^5+a^6+a^7+a^8+a^9} &=& \dfrac{a\cdot(1+a^1+a^2+a^3+a^4+a^5+a^6)}{a^3\cdot(1+a^1+a^2+a^3+a^4+a^5+a^6)} \\\\ &=& \dfrac{a}{a^3} \\\\ &=& \dfrac{1}{a^2} \\\\ \end{array}\)

 

laugh

.
 Nov 12, 2015
 #6
avatar
0
Best Answer

=1/a^2

Guest Nov 12, 2015

0 Online Users