decide the geometric meaning of
x2 - y2 + x + y = 0
Answer sheet
x = 0
x + 4y + 3 = 0
How i do this?
please help, it has to do with straight lines that intersect each other 90 degrees
\(x^2 - y^2 + x + y = 0\\ (x^2 + x) - (y^2 - y) = 0\\ \left(x^2 + x +\dfrac 1 4 - \dfrac 1 4 \right)- \left(y^2 - y +\dfrac 1 4 - \dfrac 1 4\right) = \\ \left(x+\dfrac 1 2\right)^2 - \dfrac 1 4 -\left(y-\dfrac 1 2 \right)^2 +\dfrac 1 4 = 0\\ \left(x+\dfrac 1 2\right)^2 -\left(y-\dfrac 1 2 \right)^2= 0\\ \left(x+\dfrac 1 2\right)^2 =\left(y-\dfrac 1 2 \right)^2\\ \left(x+\dfrac 1 2\right)=\pm \left(y-\dfrac 1 2 \right)\)
\(y = x+1,~y= -x - 1\\ \text{you can see that these two lines are perpendicular as }1 = -\left(\dfrac{1}{-1}\right) \)
.