+0  
 
0
456
2
avatar

About 1.15 million people live in a circular region with a population density of about 18,075 people per square kilometer. Find the radius of the region

Guest Sep 15, 2017
 #1
avatar+20151 
+1

density area people

About 1.15 million people live in a circular region

with a population density of about 18,075 people per square kilometer.

Find the radius of the region

 

Let A = area of the circular region
Let r = radius of the circular region

 

\(\mathbf{A = \ ?}\)

\(\begin{array}{|rcll|} \hline A &=& 1500000\ \text{people} \times \frac{1\ km^2}{18075\ \text{people} } \\ &=& \frac{1500000}{18075} \ km^2 \\ &=& 82.9875518672 \ km^2 \\ \hline \end{array}\)

 

\(\mathbf{r = \ ?}\)

\(\begin{array}{|rcll|} \hline \pi \ r^2 &=& A \\ r^2 &=& \frac{A}{\pi} \\ r &=& \sqrt{ \frac{A}{\pi} } \\ &=& \sqrt{ \frac{82.9875518672}{\pi} } \\ &=& \sqrt{ 26.4157581895 } \\ \mathbf{r} &\mathbf{=}& \mathbf{ 5.13962626944 \ km } \\ \hline \end{array}\)

 

The radius of the region is \(\mathbf{\approx5.14\ km}\)

 

laugh

heureka  Sep 15, 2017
edited by heureka  Sep 15, 2017
 #2
avatar
+1

heureka made a simple mistake in copying:

1.15 million / 18,075 =63.6238 Sq. Km- The area of the city region.

63.6238 = Pi x r^2

r^2 = 63.6238 / Pi

r^2 =20.252   take the sqrt of both sides

r = ~4.50 Km radius of the region

Guest Sep 15, 2017

22 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.