About 1.15 million people live in a circular region with a population density of about 18,075 people per square kilometer. Find the radius of the region
density area people
About 1.15 million people live in a circular region
with a population density of about 18,075 people per square kilometer.
Find the radius of the region
Let A = area of the circular region
Let r = radius of the circular region
\(\mathbf{A = \ ?}\)
\(\begin{array}{|rcll|} \hline A &=& 1500000\ \text{people} \times \frac{1\ km^2}{18075\ \text{people} } \\ &=& \frac{1500000}{18075} \ km^2 \\ &=& 82.9875518672 \ km^2 \\ \hline \end{array}\)
\(\mathbf{r = \ ?}\)
\(\begin{array}{|rcll|} \hline \pi \ r^2 &=& A \\ r^2 &=& \frac{A}{\pi} \\ r &=& \sqrt{ \frac{A}{\pi} } \\ &=& \sqrt{ \frac{82.9875518672}{\pi} } \\ &=& \sqrt{ 26.4157581895 } \\ \mathbf{r} &\mathbf{=}& \mathbf{ 5.13962626944 \ km } \\ \hline \end{array}\)
The radius of the region is \(\mathbf{\approx5.14\ km}\)