Find the derivative.

I was able to figure out most of this on my own. But I got stuck at the part that involved cotangent.
Where did cotangent come from?? Please explain. Thanks guys :)

CurlyFry  May 10, 2018

1+0 Answers


Hi Curly :)



\(y=(sin9x)^{6x}\\ y=e^{ln(sin9x)^{6x}}\\ y=e^{6x\cdot ln(sin9x)}\\ let\;u=6x\cdot ln(sin9x)\\ \frac{du}{dx}=6\cdot ln(sin9x)+6x \cdot \frac{9cos9x}{sin9x}\\ \qquad \text{I used product rule here}\\ \qquad \text{and also used the fact that }\\ \qquad \frac{d}{dx}ln(f(x))= \frac{f'(x)}{f(x)}\\ \frac{du}{dx}=6\cdot ln(sin9x)+6x \cdot \frac{9cos9x}{sin9x}\\ \frac{du}{dx}=6\cdot ln(sin9x)+6x \cdot 9(cot9x)\\ \frac{du}{dx}=6\left[ ln(sin9x)+9x(cot9x)\right] \\ \)


\(y=e^{6x\cdot ln(sin9x)}\\ y=e^{u}\\ \frac{dy}{du}=e^u\\ \frac{dy}{du}=e^{6x\cdot ln(sin9x)}\\ \frac{dy}{du}=e^{ ln(sin9x)\cdot 6x}\\ \frac{dy}{du}=(sin9x)^{6x}\\ \)


\(\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}\\ \frac{dy}{dx}=(sin9x)^{6x}\cdot 6\left[ ln(sin9x)+9x(cot9x) \right]\\ \frac{dy}{dx}=6(sin9x)^{6x}\left[ ln(sin9x)+9x(cot9x) \right]\\\)


If you do not understand one of the steps please explain which step/s is giving you trouble.

Melody  May 10, 2018

8 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy