+0  
 
+5
722
4
avatar+44 

What's the derivative of \(\sqrt{\sin x \cos x}\)?

 Aug 31, 2016

Best Answer 

 #1
avatar+9673 
+10

We first work out the derivative of sinx cosx

Using product rule: 

\(\dfrac{d}{dx}\sin x \cos x \\=(\cos x)(\cos x)+(-\sin x)(\sin x)\\=\cos 2x\)

Using chain rule:

\(y = \sqrt u, u=\sin x\cos x\)

\(\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}=\dfrac{1}{2\sqrt{u}}\times \cos 2x=\dfrac{\cos 2x}{2\sqrt{\sin x\cos x}}\)

 Aug 31, 2016
 #1
avatar+9673 
+10
Best Answer

We first work out the derivative of sinx cosx

Using product rule: 

\(\dfrac{d}{dx}\sin x \cos x \\=(\cos x)(\cos x)+(-\sin x)(\sin x)\\=\cos 2x\)

Using chain rule:

\(y = \sqrt u, u=\sin x\cos x\)

\(\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}=\dfrac{1}{2\sqrt{u}}\times \cos 2x=\dfrac{\cos 2x}{2\sqrt{\sin x\cos x}}\)

MaxWong Aug 31, 2016
 #2
avatar+118677 
+5

Thanks Max, I am just going to do it a different way.

 

What's the derivative of \(\sqrt{\sin x \cos x}\;?\)

 

\(sin2x=2\sin x \cos x\\so\\ 0.5sin2x=\sin x \cos x\\ \frac{d}{dx}\;[0.5sin2x]^{0.5}\\ =\frac{d}{dx}\;\sqrt{0.5} \;\;[sin2x]^{0.5}\\ =\;\sqrt{0.5}*0.5 \;\;[sin2x]^{-0.5}*2cos(2x)\\ =\;\sqrt{0.5} \;\;\frac{cos(2x)}{ \sqrt{sin(2x)} }\\ = \;\;\frac{cos(2x)}{ \sqrt{2sin(2x)} }\\ = \;\;\frac{cos(2x)}{\sqrt{2*2sinxcosc} }\\ = \;\;\frac{cos(2x)}{2\sqrt{sinxcosc} }\\ \)

 

There you go - our answers are the same ...   hopefully that means we are both correct  !!!

 Aug 31, 2016
 #3
avatar+9673 
0

I saw the \(\boxed{\text{1 user composing an answer}\\\text{Melody}}\) box so I thought my answer was wrong. Thank you for saying that we are both correct XD.

MaxWong  Aug 31, 2016
 #4
avatar+44 
0

thank you both of u ;D

 Aug 31, 2016

5 Online Users

avatar