+0  
 
+1
846
4
avatar+322 

So I was given the equation f(t)= cos(pi(t) / 6) and was told to find the velocity equation which was the first derivative,

V(t)= -(pi/6) [sin(pi(t)/6)].  The part I'm having trouble with is finding the velocity after 1 second. I plugged in 1 into the velocity equation and got an answer but it keeps saying it's wrong and I have no idea what I'm doing wrong.

 Mar 9, 2019
 #1
avatar+6250 
+3

\(f(t) = \cos\left(\dfrac{\pi t}{6}\right)\\ \dfrac{df}{dt}(t) = -\sin\left(\dfrac{\pi t}{6}\right)\cdot \dfrac \pi 6\\ \dfrac{df}{dt}(1) = -\sin\left(\dfrac{\pi}{6}\right)\cdot \dfrac \pi 6 = -\dfrac 1 2 \dfrac \pi 6 = -\dfrac{\pi}{12}\)

 

What did you get?

 Mar 9, 2019
 #2
avatar+322 
+1

My calculator kept giving me -0.004784853  but it's probably just because I was putting it in wrong.  Thank you.

Ruublrr  Mar 9, 2019
 #3
avatar+6250 
+2

check that you've got it set to use whatever units you are, radians or degrees

Rom  Mar 9, 2019
 #4
avatar+322 
+1

I just realized my calculator was in degree mode so I'm pretty sure that is the reason I was getting the wrong answer

Ruublrr  Mar 9, 2019

3 Online Users

avatar