+0

# Determinant of a matrix

0
169
2

Hi. I need help at determinating the determinant of this matrix.

3  -5  -2  2

-4   7   4  4

4  -9  -3  7

2  -6  -3  2

I calculated and it gave me 0 but the result should be 27.

Guest Oct 16, 2017
Sort:

#1
+85958
+1

3  -5  -2  2

-4   7   4  4

4  -9  -3  7

2  -6  -3  2

We can use some row operations to minimize the work needed.....

Add the 2nd row to the 3rd row.....put the result  in the 3rd row

3  -5  -2  2

-4   7   4  4

0  -2   1 11

2  -6  -3  2

Multiply the 4th row by 2.......add it to the second row

3  -5  -2  2

0  -5  -2  8

0  -2   1 11

2  -6  -3  2

Expand along the first row and first column

3 [  -5  -2   8

-2   1  11

-6  -3  2 ]

Rewrite the first two columns of the matrix

3 [   -5   -2   8    -5     -2

-2    1   11   -2     1

- 6    -3   2    -6    -3 ]

3  [  determinant of the marix]  =

3  [  (-5* 1 *2  +  -2 * 11 * -6  +  8 * -2 *-3) - ( -6*1*8 + -3*11*-5 + 2 *-2 * -2) ] =  135   (1)

-2  [-5  -2  2

-5  -2  8

-2   1 11

Rewrite the first two columns

-2 [  -5  -2    2     -5   -2

-5  -2   8     -5    -2

-2   1   11    -2    1 ]

-2 [ determinant of the matrix ]

-2 [ ( -5*-2*11 + -2*8*-2 + 2*-5*1) - (-2*-2*2 + 1*8*-5 + 11*-5*-2) ]  =  -108   (2)

Add (1)  and (2)  =    135  - 108   =    27

CPhill  Oct 16, 2017
edited by CPhill  Oct 17, 2017
#2
+19207
+1

Determinant of a matrix

3  -5  -2  2

-4   7   4  4

4  -9  -3  7

2  -6  -3  2

1.  tridiagonal matrix, e. g. Gauß
$$\begin{pmatrix} 3 & -5 & -2 & 2 \\ 0 & \frac{1}{3} & 1\ \frac{1}{3} & 6\ \frac{2}{3} \\ 0 & 0 & 9 & 51 \\ 0 & 0 & 0 & 3 \\ \end{pmatrix}$$

2.  Determinant: multiply the diagonally elements

The determinant of this matrix is $$3 \cdot \frac{1}{3}\cdot 9\cdot 3 = \mathbf{27 }$$

heureka  Oct 17, 2017

### 28 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details