Hi. I need help at determinating the determinant of this matrix.
3 -5 -2 2
-4 7 4 4
4 -9 -3 7
2 -6 -3 2
I calculated and it gave me 0 but the result should be 27.
3 -5 -2 2
-4 7 4 4
4 -9 -3 7
2 -6 -3 2
We can use some row operations to minimize the work needed.....
Add the 2nd row to the 3rd row.....put the result in the 3rd row
3 -5 -2 2
-4 7 4 4
0 -2 1 11
2 -6 -3 2
Multiply the 4th row by 2.......add it to the second row
3 -5 -2 2
0 -5 -2 8
0 -2 1 11
2 -6 -3 2
Expand along the first row and first column
3 [ -5 -2 8
-2 1 11
-6 -3 2 ]
Rewrite the first two columns of the matrix
3 [ -5 -2 8 -5 -2
-2 1 11 -2 1
- 6 -3 2 -6 -3 ]
3 [ determinant of the marix] =
3 [ (-5* 1 *2 + -2 * 11 * -6 + 8 * -2 *-3) - ( -6*1*8 + -3*11*-5 + 2 *-2 * -2) ] = 135 (1)
-2 [-5 -2 2
-5 -2 8
-2 1 11
Rewrite the first two columns
-2 [ -5 -2 2 -5 -2
-5 -2 8 -5 -2
-2 1 11 -2 1 ]
-2 [ determinant of the matrix ]
-2 [ ( -5*-2*11 + -2*8*-2 + 2*-5*1) - (-2*-2*2 + 1*8*-5 + 11*-5*-2) ] = -108 (2)
Add (1) and (2) = 135 - 108 = 27
Determinant of a matrix
3 -5 -2 2
-4 7 4 4
4 -9 -3 7
2 -6 -3 2
1. tridiagonal matrix, e. g. Gauß
\(\begin{pmatrix} 3 & -5 & -2 & 2 \\ 0 & \frac{1}{3} & 1\ \frac{1}{3} & 6\ \frac{2}{3} \\ 0 & 0 & 9 & 51 \\ 0 & 0 & 0 & 3 \\ \end{pmatrix} \)
2. Determinant: multiply the diagonally elements
The determinant of this matrix is \(3 \cdot \frac{1}{3}\cdot 9\cdot 3 = \mathbf{27 }\)