+0  
 
0
912
1
avatar+84 

Determine (if it exists) by evaluating the corresponding one-sided limits.

 

lim                          | x-3 | 

x --> 3                 ---------------

                              x^2 -9

 

a. limit does not exist

b. 0

c. 3

d. 1/3

e. -1/6

 

 

 

 

 

 

 

complete the table and use the result to estimate the equation numerically

 

lim                  x+2

x--> -2          ---------------

                     x^2 - 2x - 8

 

 

x        -2.1     -2.01     -2.001     -2    -1.999     -1.99     -1.9

f(x)                                             ?

 

 

a. infinity

b. -1/6

c. limit does not exist

d. -6

e. 6

 Aug 29, 2016
 #1
avatar+118690 
+5

Determine (if it exists) by evaluating the corresponding one-sided limits.

 

lim                          | x-3 | 

x --> 3                 ---------------

                              x^2 -9

 

As x tends to 3 from above x-3 is positive so  |x-3|=x-3

so

\(\displaystyle\lim_{x\rightarrow3^+}\;\frac{|x-3|}{x^2-9}\\ =\displaystyle\lim_{x\rightarrow3^+}\;\frac{x-3}{x^2-9}\\ =\displaystyle\lim_{x\rightarrow3^+}\;\frac{1}{2x}\\ =\frac{1}{6}\)

 

BUT  as x tends to 3 from below x-3 is negative so  |x-3|=3-x

 

\(\displaystyle\lim_{x\rightarrow3^-}\;\frac{|x-3|}{x^2-9}\\ =\displaystyle\lim_{x\rightarrow3^-}\;\frac{3-x}{x^2-9}\\ =\displaystyle\lim_{x\rightarrow3^-}\;\frac{-1}{2x}\\ =\frac{-1}{6}\)

 

This means that the graph is not continuous at x=3 so the limit does not exist.

 

Here is a picture of the graph.

 

 Aug 29, 2016

0 Online Users