+0  
 
0
441
3
avatar

Determine the lowest numbet n>5 so that n≡5 (mod 36). Also explain how and why thank you

 Mar 17, 2015

Best Answer 

 #1
avatar+17746 
+10

When you are looking for the answer, mode 36, you are looking for a number whose remainder is 5 when that number is divided by 36.

All the numbers from 0 through 35, when divided by 36, have 0 for a quotient and that number for a remainder.

36 mod 36 is 0 because 36 divided by 36 is 1 with a remainder of 0.

37 mod 36 is 1 because 37 divided by 36 is 1 with a remainder of 1. 

Continuing:

38 mod 36 is 2 because 38 divided by 36 is 1 with a remainder of 2. 

39 mod 36 is 3 because 39 divided by 36 is 1 with a remainder of 3. 

40 mod 36 is 4 because 40 divided by 36 is 1 with a remainder of 4. 

41 mod 36 is 1 becauae 41 divided by 36 is 1 with a remainder of 5.  (Finally!) 

-- I could have gotten there quicker just by adding 5 to 36!

 Mar 17, 2015
 #1
avatar+17746 
+10
Best Answer

When you are looking for the answer, mode 36, you are looking for a number whose remainder is 5 when that number is divided by 36.

All the numbers from 0 through 35, when divided by 36, have 0 for a quotient and that number for a remainder.

36 mod 36 is 0 because 36 divided by 36 is 1 with a remainder of 0.

37 mod 36 is 1 because 37 divided by 36 is 1 with a remainder of 1. 

Continuing:

38 mod 36 is 2 because 38 divided by 36 is 1 with a remainder of 2. 

39 mod 36 is 3 because 39 divided by 36 is 1 with a remainder of 3. 

40 mod 36 is 4 because 40 divided by 36 is 1 with a remainder of 4. 

41 mod 36 is 1 becauae 41 divided by 36 is 1 with a remainder of 5.  (Finally!) 

-- I could have gotten there quicker just by adding 5 to 36!

geno3141 Mar 17, 2015
 #2
avatar
+5

Allright, i get it now! Thanks a ton!

 Mar 17, 2015
 #3
avatar+99109 
0

Thanks Geno, that is a really good explanation.     ヽ(ヅ)ノ

 Mar 18, 2015

38 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar