Determine the point(s) of intersection of y=2(3^x) and y=6(2^x) algebraically. Round your answer to one decimal place.
\(y=2(3^x)\qquad and \qquad y=6(2^x)\\ so\\ 2(3^x)=6(2^x)\\ \frac{3^x}{2^x}=3\\ 1.5^x=3\\ log1.5^x=log3\\ xlog1.5=log3\\ x=\frac{log3}{log1.5}\\ x\approx 2.7095\)
You can take if from here.