+0  
 
0
257
2
avatar

DETERMINE THE RESULTANT VELOCITY OF 75 M/SEC, 25 DEGREES EAST OF NORTH AND 100 M/SEC, 25 DEGREES EAST OF SOUTH

Guest Sep 30, 2014

Best Answer 

 #1
avatar+81043 
+10

We have two vectors here   v1 = < 75cos(65) , 75sin(65) >    and v2 = < 100cos(295), 100sin(295) >

Adding the x components, we have   75cos(65)  + 100cos(295) = about 73.96

Adding the x components, we have   75sin(65)  + 100sin(295) = about -22.66

And the resultant is given by

√[73.96+ (-22.66)2 ] =  about 77.35

And the resultant angle is given by

tan-1(-22.66/73.96) = about -17.03° or about  S(72.97°)E    (using "heading" notation)

 

CPhill  Sep 30, 2014
Sort: 

2+0 Answers

 #1
avatar+81043 
+10
Best Answer

We have two vectors here   v1 = < 75cos(65) , 75sin(65) >    and v2 = < 100cos(295), 100sin(295) >

Adding the x components, we have   75cos(65)  + 100cos(295) = about 73.96

Adding the x components, we have   75sin(65)  + 100sin(295) = about -22.66

And the resultant is given by

√[73.96+ (-22.66)2 ] =  about 77.35

And the resultant angle is given by

tan-1(-22.66/73.96) = about -17.03° or about  S(72.97°)E    (using "heading" notation)

 

CPhill  Sep 30, 2014
 #2
avatar+91469 
0

thanks Chris,

One day I will get the time to 'study' your vector answers.    

Melody  Sep 30, 2014

15 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details