+0  
 
+1
628
2
avatar

I need to determine the defined range for \({1+tanθ \over 1 + cotθ}\)=\({1-tanθ \over cotθ-1}\), how should I do so?

 

The answer is θ (cannot equal to) kπ/4, k E Z

 Jun 11, 2020
 #1
avatar+1262 
+2

actually any value of \(θ\) is true if \(θ\) is a variable but the equation \({1+\tanθ \over 1 + \cotθ}\)=\({1-\tanθ \over \cotθ-1}\) is an identity  

 Jun 11, 2020
 #2
avatar+23252 
0

You need to eliminate all the possibilities for a denominator to be zero.

 

Since there is a  tan(x)  term, (and since  tan(x) = sin(x)/cos(x) ), you must eliminate all the values that

make  cos(x) = 0.

 

Since there is a  cot(x)  term, (and since  cot(x) = cos(x)/sin(x) ), you must eliminate all the values that

make  sin(x) = 0.

 

Since there is a denominator of  1 + cot(x),  you must eliminate all the values that make  cot(x) = -1.

 

Since there is a denominator of  cot(x) - 1,  you must eliminate all the values that make  cot(x) = 1.

 

[And, remember that both  tan(x)  and  cot(x)  have a period of  pi.]

 Jun 11, 2020

0 Online Users