5 + 8 + 11 + ... + 53
here's what i did:
\(S_{53} = {53 [2(5) + (53 - 1)3] \over 2}\)
\(S_{53} = {53 (166) \over 2}\)
\(S_{53} = 4399\)
the answer is 493, what did i do wrong?
Let's arrange the series in a slightly different manner
53 + [ 50 + 5 ] + [ 47 + 8 ] + [ 44 + 11] , etc.
So....we have some "n" pairs each summing to 55 plus the last term
Finding the number of pairs is a little tricky....but we can use this "formula"
n = ( [ last even term - first term ] / 3 + 1 ) / 2
So....the number of pairs is
([ 50 - 5 ] / 3 + 1) / 2 =
(45/ 3 + 1) / 2 =
[15 + 1 ] / 2 =
16 / 2 =
8
So......the sum is`` 53 + ( 8 * 55 ) = 493
N =((L - F) / D) + 1, where N=Number of terms, L=Last term, F=First term, D=Common difference
N =((53 - 5) / 3) + 1
N = 17 Number of terms.
S =(F+L) / 2 x N , where F=First term, L=Last term. N=Number of terms, S=The Sum.
S =(53+5)/2 x 17
S =58/2 x 17
S =29 x 17 =493
determining the sum of this arithmetic series?
5 + 8 + 11 + ... + 53
arithmetic series:
\(\begin{array}{lrrrrrrrrrrrrrrrrr} & {\color{red}d_0 = 5} && 8 && 11 && 14 && 17 && \cdots && 53 \\ \text{1. Difference } && {\color{red}d_1 = 3} && 3 && 3 && 3 && \cdots && 3 \\ \end{array}\)
Formula:
\(\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \\ s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \\ \hline \end{array}\)
n = ?
\(\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \quad & | \quad a_n = 53 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ 53 &=& \binom{n-1}{0}\cdot {\color{red}5 } + \binom{n-1}{1}\cdot {\color{red}3 } \\ 53 &=& 5+(n-1)\cdot 3 \\ 53 &=& 2 +3n \quad & | \quad -2\\ 51 &=& 3n \quad & | \quad :3 \\ 17 &=& n \\ \mathbf{n} &\mathbf{=}& \mathbf{17} \\ \hline \end{array} \)
sum (s) = ?
\(\begin{array}{|rcl|} \hline s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \quad & | \quad n = 17 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ s &=& \binom{17}{1}\cdot {\color{red}5 } + \binom{17}{2}\cdot {\color{red}3 } \\ s &=& 17\cdot 5 + \frac{17}{2} \cdot \frac{16}{1}\cdot 3 \\ s &=& 17\cdot \left(5+\frac{16}{2}\cdot 3 \right) \\ s &=& 17\cdot(5+ 24) \\ s &=& 17\cdot 29 \\ \mathbf{s} &\mathbf{=}& \mathbf{493} \\ \hline \end{array}\)
The sum is 493