+0  
 
0
41
1
avatar+910 

I got : 

 

Sorry if this is a really obvious problem, I'm just insecure with Vectors. 

Julius  May 3, 2018

Best Answer 

 #1
avatar+19344 
+2

Did I do it correct?

\(\begin{array}{|rcll|} \hline \vec{x} &=& \vec{i} + 2\vec{k} \\ \vec{y} &=& 3\vec{i} + \vec{j} \\ \vec{z} &=& 3\vec{j} + \vec{k} \\\\ && \mathbf{2(\vec{x}-\vec{y})+\vec{z}} \\ &=& 2\left(\vec{i} + 2\vec{k}-(3\vec{i} + \vec{j}) \right)+3\vec{j} + \vec{k} \\ &=& 2\left(\vec{i} + 2\vec{k}-3\vec{i} - \vec{j} \right)+3\vec{j} + \vec{k} \\ &=& 2\left( -2\vec{i} - \vec{j} +2\vec{k} \right)+3\vec{j} + \vec{k} \\ &=& -4\vec{i} - 2\vec{j} +4\vec{k} +3\vec{j} + \vec{k} \\ &\mathbf{=}& \mathbf{-4\vec{i} +\vec{j} + 5\vec{k}} \\ \hline \end{array}\)

 

 

laugh

heureka  May 3, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
+2
Best Answer

Did I do it correct?

\(\begin{array}{|rcll|} \hline \vec{x} &=& \vec{i} + 2\vec{k} \\ \vec{y} &=& 3\vec{i} + \vec{j} \\ \vec{z} &=& 3\vec{j} + \vec{k} \\\\ && \mathbf{2(\vec{x}-\vec{y})+\vec{z}} \\ &=& 2\left(\vec{i} + 2\vec{k}-(3\vec{i} + \vec{j}) \right)+3\vec{j} + \vec{k} \\ &=& 2\left(\vec{i} + 2\vec{k}-3\vec{i} - \vec{j} \right)+3\vec{j} + \vec{k} \\ &=& 2\left( -2\vec{i} - \vec{j} +2\vec{k} \right)+3\vec{j} + \vec{k} \\ &=& -4\vec{i} - 2\vec{j} +4\vec{k} +3\vec{j} + \vec{k} \\ &\mathbf{=}& \mathbf{-4\vec{i} +\vec{j} + 5\vec{k}} \\ \hline \end{array}\)

 

 

laugh

heureka  May 3, 2018

28 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy