+0  
 
0
258
1
avatar

Solve the following second-order linear ordinary differential equation, with steps of the solution:

y''(t) + y(t) = sin(t). I thank you for any help.

Guest Apr 5, 2017
 #1
avatar
0

Solve ( d^2 y(t))/( dt^2) + y(t) = sin(t):
Apply the Laplace transformation ℒ_t[f(t)](s) = integral_0^∞ f(t) e^(-s t) dt to both sides:
ℒ_t[( d^2 y(t))/( dt^2) + y(t)](s) = ℒ_t[sin(t)](s)
Find the Laplace transformation term by term: :
ℒ_t[( d^2 y(t))/( dt^2)](s) + ℒ_t[y(t)](s) = ℒ_t[sin(t)](s)
Apply ℒ_t[( d^2 y(t))/( dt^2)](s) = s^2 (ℒ_t[y(t)](s)) - s y(0) - y'(0):
ℒ_t[y(t)](s) + -(s y(0)) + s^2 ℒ_t[y(t)](s) - y'(0) = ℒ_t[sin(t)](s)
Apply ℒ_t[sin(t)](s) = 1/(s^2 + 1):
ℒ_t[y(t)](s) + s^2 (ℒ_t[y(t)](s)) - s y(0) - y'(0) = 1/(s^2 + 1)
Simplify:
(s^2 + 1) (ℒ_t[y(t)](s)) - s y(0) - y'(0) = 1/(s^2 + 1)
Solve for ℒ_t[y(t)](s):
ℒ_t[y(t)](s) = (y(0) s^3 + y(0) s + y'(0) + y'(0) s^2 + 1)/(s^2 + 1)^2
Decompose ℒ_t[y(t)](s) via partial fractions:
ℒ_t[y(t)](s) = 1/(s^2 + 1)^2 + (s y(0))/(s^2 + 1) + (y'(0))/(s^2 + 1)
Compute y(t) = ℒ_s^(-1)[1/(s^2 + 1)^2 + (s y(0))/(s^2 + 1) + (y'(0))/(s^2 + 1)](t):
Find the inverse Laplace transformation term by term: :
y(t) = ℒ_s^(-1)[1/(s^2 + 1)^2](t) + ℒ_s^(-1)[(s y(0))/(s^2 + 1)](t) + ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t)
Apply ℒ_s^(-1)[1/(s^2 + 1)^2](t) = 1/2 (sin(t) - t cos(t)):
y(t) = 1/2 (-t cos(t) + sin(t)) + ℒ_s^(-1)[(s y(0))/(s^2 + 1)](t) + ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t)
Apply ℒ_s^(-1)[(s y(0))/(s^2 + 1)](t) = y(0) cos(t):
y(t) = 1/2 (-t cos(t) + sin(t)) + y(0) cos(t) + ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t)
Apply ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t) = sin(t) y'(0):
y(t) = 1/2 (-t cos(t) + sin(t)) + y(0) cos(t) + y'(0) sin(t)
Substitute c_1 = y(0) and c_2 = y'(0):
y(t) = 1/2 (-t cos(t) + sin(t)) + c_1 cos(t) + c_2 sin(t)
Simplify the arbitrary constants:
Answer: | y(t) = -1/2 t cos(t) + c_1 cos(t) + c_2 sin(t)

Guest Apr 5, 2017

12 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.