+0  
 
0
711
6
avatar+9673 

Solve the differential equation:

\(2xy\text{ dx} + (1+x^2)\text{ dy} = 0\)

 Jan 1, 2017

Best Answer 

 #5
avatar
+10

It went wrong at the end Max.

 

It's better if the constant is on the x side, and then

 

\(\displaystyle \ln \frac{1}{1+x^{2}}+\ln(K)=\ln(y)\),

 

\(\displaystyle \ln\frac{K}{1+x^{2}}=\ln(y)\),

 

\(\displaystyle y = \frac{K}{1+x^{2}}\).

 

Tiggsy

 Jan 2, 2017
 #1
avatar
+5

Hi Max

separate variables to get

(1+x^2)dy = -2xydx 

1/y  dy      = (-2x dx)/(1+x^2)

intergrate lhs wrt y    and rhs wrt to x

ln y  = -  ln (1+x^2)    = ln(1/{1+x^2} )

anti log both sides

y= 1/(1+x^2)

 

and a happy new year

 Jan 1, 2017
 #2
avatar+9673 
0

The answer is correct.

Btw Happy New Year :)

MaxWong  Jan 1, 2017
 #3
avatar
+5

Solution should contain a constant of integration.

 Jan 1, 2017
 #4
avatar+9673 
+5

OK. I thought it was correct...... Let me do it myself......

\(2xy\text{ dx} + (1+x^2) \text{ dy} = 0\\ 2xy\text{ dx} = -(1+x^2) \text{ dy}\\ -\dfrac{2x}{1+x^2} \text{ dx} = \dfrac{\text{ dy}}{y}\\ \displaystyle\int -\dfrac{2x}{1+x^2} \text{ dx} = \displaystyle\int\dfrac{\text{ dy}}{y}\\ \text{ Let }u = 1 + x^2,\text{ du} = 2x \text{ dx}\\ -\displaystyle\int \dfrac{\text{ du}}{u} = \displaystyle\int\dfrac{\text{ dy}}{y}\\ -\ln |u| = \ln |y| + C\\ \ln |\dfrac{1}{u}| = \ln |y| + C\\ \ln |\dfrac{1}{1+x^2}|= \ln |y| + C\\ \text{ Set }C = \ln K\\ \ln (\dfrac{1}{1+x^2})=\ln |y + K|\\ |y + K| = \dfrac{1}{1+x^2}\\ y + K = \pm \dfrac{1}{1+x^2}\\ y = K\pm\dfrac{1}{1+x^2}\)

MaxWong  Jan 2, 2017
 #5
avatar
+10
Best Answer

It went wrong at the end Max.

 

It's better if the constant is on the x side, and then

 

\(\displaystyle \ln \frac{1}{1+x^{2}}+\ln(K)=\ln(y)\),

 

\(\displaystyle \ln\frac{K}{1+x^{2}}=\ln(y)\),

 

\(\displaystyle y = \frac{K}{1+x^{2}}\).

 

Tiggsy

Guest Jan 2, 2017
 #6
avatar+9673 
+5

Oh thank you.

I am not very careful

MaxWong  Jan 2, 2017

2 Online Users