+0  
 
+5
829
1
avatar+44 

What is f ' (x) when f(x) = x^x? 

 Aug 19, 2016

Best Answer 

 #1
avatar+9673 
+15

We have to use implicit differentiation.

\(y=x^x\\ \ln y = x \ln x\\ \dfrac{\mathtt dy}{\mathtt dx}\dfrac{1}{y}=\ln x+1\text{ <-- product rule}\\ \dfrac{\mathtt dy}{\mathtt dx}=y(\ln x + 1)\\ \;\;\;\;\;\;\!=x^x\ln x + x^x\)

 Aug 19, 2016
 #1
avatar+9673 
+15
Best Answer

We have to use implicit differentiation.

\(y=x^x\\ \ln y = x \ln x\\ \dfrac{\mathtt dy}{\mathtt dx}\dfrac{1}{y}=\ln x+1\text{ <-- product rule}\\ \dfrac{\mathtt dy}{\mathtt dx}=y(\ln x + 1)\\ \;\;\;\;\;\;\!=x^x\ln x + x^x\)

MaxWong Aug 19, 2016

1 Online Users

avatar