+0  
 
0
184
6
avatar+175 

At the grocery store, I bought 4 different items. I brought 3 identical bags, and handed them to the cashier. How many ways are there for the cashier to put the items I bought in the 3 identical bags, assuming he might leave some of the bags empty?

Maplesnowy  Feb 18, 2018
 #1
avatar+87309 
+2

 

 

The bags are indistinguishable, so the only thing we have to worry about is the number of ways to partition 4 items

 

The partitions are

(4,0,0)  (3,1,0) (2,2,0)  (2,1,1)

 

We could put all 4 items in one bag  = 1 way

We could put 3 items in one bag and 1 in another  = 1 way

We could put 2 items in 2 of the bags  =  1 way

We could put  2 items in one bag  and one item in each of the other two  =  1 way

 

So....4 ways

 

 

cool cool cool

CPhill  Feb 18, 2018
 #2
avatar+175 
0

It says the answer's wrong...... 

Maplesnowy  Feb 18, 2018
 #3
avatar+175 
+1

I think it's because the items are distinguishable? 

Maplesnowy  Feb 18, 2018
 #4
avatar
+1

See the answer here, if you can understand it:

https://www.quora.com/In-how-many-ways-can-4-distinct-balls-be-distributed-into-3-identical-boxes

Guest Feb 18, 2018
 #5
avatar+87309 
0

Thanks, guest...14 is correct....

 

cool cool cool

CPhill  Feb 18, 2018
 #6
avatar
0

Bag1          Bag2         Bag3

4                 0                  0.....................1

3                 1                  0.....................2

2                 2                  0.....................3

1                 3                  0.....................4

0                 4                  0.....................5

3                 0                  1.....................6

2                 0                  2.....................7

1                 0                  3.....................8

0                 0                  4.....................9

0                 3                  1.....................10

0                 2                  2.....................11

0                 1                  3.....................12

1                 2                  1.....................13

1                 1                  2.....................14

Here is the actual distribution!!!!. Or, did I forget something???

Guest Feb 18, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.