+0  
 
0
186
2
avatar

The faces of two regular dodecahedra are labeled with the numbers 1 to 12 in order to make dice. If these dice are rolled, what is the probability that the sum of the two top numbers is greater than 12?

Guest Feb 3, 2018
 #1
avatar+89775 
+1

There are 12^2  =  144 possible outcomes

 

Outcome        Freq

2                      1

3                      2

4                      3

5                      4

6                      5

7                      6

8                      7

9                      8

10                    9

11                   10

12                   11

 

Sum of            66

Freq

 

So.....the sum of the frequencies for rolling   a number > 12  = 144 - 66 = 78

 

So...the probability of rolling a number 12 or greater  = 78/144  = 13/24  ≈ 54.16%  

 

 

cool cool cool

CPhill  Feb 3, 2018
 #2
avatar
0

Sum of arithmetic series from 1 to 12 =[F+L] /2 x N =[1+12] / 2 x 12 =78 combinations of 13 to 24

So, the probability is =78 /(12^2) =78 / 144.

Guest Feb 3, 2018

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.