+0  
 
+1
448
1
avatar+147 

Find the greatest integer value of $b$ for which the expression $\frac{9x^3+4x^2+11x+7}{x^2+bx+8}$ has a domain of all real numbers.

 Feb 21, 2021
 #1
avatar+1223 
-1

\(x^2 + bx+ 8\) = 0    has to have no real solutions. So, the discriminant neds to be less than 0.

 

\(\Delta = b^2 - 4ac= b^2 - 32 < 0\)

 

\(b^2 < 32\)

 

The greatest integer value of b is 5.

 Feb 21, 2021

2 Online Users