+0  
 
0
338
3
avatar+272 

let f(x)=(3x-7)/(x+1).  Find the domain of f.  Answer in interval form.

 

find the range of f.  Answer in interval form

 

thanks!

 Oct 30, 2017

Best Answer 

 #2
avatar+7352 
+1

f(x)  =  (3x - 7) / (x + 1)

 

The denominator cannot be zero,  so we can't have   x + 1  =  0   →   x = -1

 

The domain of  f  is all values except  -1  .   (-∞ , -1) U (-1, ∞)

 

If you solve this for  x  , you will get  x =  (y - 7)/(y - 3)  .

Now we can see that  y  cannot be  3 .

 

Also...the degree of the numerator  =  the degree of the denominator,

so there is a horizontal asymptote at   y  =  3/1  =  3  .

 

So the range of  f  is all values except  3 .  (-∞ , 3) U (3, ∞)

 Oct 30, 2017
 #1
avatar+272 
0

Seriously fast answers would be appriciated

 Oct 30, 2017
 #2
avatar+7352 
+1
Best Answer

f(x)  =  (3x - 7) / (x + 1)

 

The denominator cannot be zero,  so we can't have   x + 1  =  0   →   x = -1

 

The domain of  f  is all values except  -1  .   (-∞ , -1) U (-1, ∞)

 

If you solve this for  x  , you will get  x =  (y - 7)/(y - 3)  .

Now we can see that  y  cannot be  3 .

 

Also...the degree of the numerator  =  the degree of the denominator,

so there is a horizontal asymptote at   y  =  3/1  =  3  .

 

So the range of  f  is all values except  3 .  (-∞ , 3) U (3, ∞)

hectictar Oct 30, 2017
 #3
avatar+98197 
+1

Hey, hectictar.....speed up those answers.....!!!!!!!

 

Seriously, WhichWitch  ?????

 

We aren't being paid for this......we try to answer as quickly as possible.....but....we can't guarantee anything.....!!!!!

 

 

cool cool cool

 Oct 30, 2017

29 Online Users

avatar
avatar
avatar
avatar
avatar