+0  
 
0
983
3
avatar+267 

let f(x)=(3x-7)/(x+1).  Find the domain of f.  Answer in interval form.

 

find the range of f.  Answer in interval form

 

thanks!

 Oct 30, 2017

Best Answer 

 #2
avatar+9481 
+1

f(x)  =  (3x - 7) / (x + 1)

 

The denominator cannot be zero,  so we can't have   x + 1  =  0   →   x = -1

 

The domain of  f  is all values except  -1  .   (-∞ , -1) U (-1, ∞)

 

If you solve this for  x  , you will get  x =  (y - 7)/(y - 3)  .

Now we can see that  y  cannot be  3 .

 

Also...the degree of the numerator  =  the degree of the denominator,

so there is a horizontal asymptote at   y  =  3/1  =  3  .

 

So the range of  f  is all values except  3 .  (-∞ , 3) U (3, ∞)

 Oct 30, 2017
 #1
avatar+267 
0

Seriously fast answers would be appriciated

 Oct 30, 2017
 #2
avatar+9481 
+1
Best Answer

f(x)  =  (3x - 7) / (x + 1)

 

The denominator cannot be zero,  so we can't have   x + 1  =  0   →   x = -1

 

The domain of  f  is all values except  -1  .   (-∞ , -1) U (-1, ∞)

 

If you solve this for  x  , you will get  x =  (y - 7)/(y - 3)  .

Now we can see that  y  cannot be  3 .

 

Also...the degree of the numerator  =  the degree of the denominator,

so there is a horizontal asymptote at   y  =  3/1  =  3  .

 

So the range of  f  is all values except  3 .  (-∞ , 3) U (3, ∞)

hectictar Oct 30, 2017
 #3
avatar+129933 
+1

Hey, hectictar.....speed up those answers.....!!!!!!!

 

Seriously, WhichWitch  ?????

 

We aren't being paid for this......we try to answer as quickly as possible.....but....we can't guarantee anything.....!!!!!

 

 

cool cool cool

 Oct 30, 2017

1 Online Users