+0  
 
0
211
1
avatar+956 

If f(x) = log x and g(x) = 1/(x-7), what is the domain of g(f(x))? 

 

So g(f(x)) = 1/(logx-7) 

 

I was a bit confused with the domain of a reciprocal function... 

 

Options: 

a) {x e R| x > 0} 

b) {x e R | x can't equal 7} 

c) {x e R | x > 0 and x can't equal 10 000 000} 

d) {x e R | x can't equal 10 000 000} 

Julius  Jan 18, 2018

Best Answer 

 #1
avatar+7340 
+2

g( f(x) )   =   1 / ( log x - 7 )

 

There are two things that we need to consider.

 

Since  log x  is part of the function, we have the restriction  x > 0 .

 

Since  log x - 7  is in a denominator, we have the restriction  log x - 7 ≠ 0 .

log x  ≠  7

x  ≠  107

x  ≠  10 000 000

 

So the domain is all real  x  values such that  x > 0  and  x  ≠  10 000 000

hectictar  Jan 18, 2018
 #1
avatar+7340 
+2
Best Answer

g( f(x) )   =   1 / ( log x - 7 )

 

There are two things that we need to consider.

 

Since  log x  is part of the function, we have the restriction  x > 0 .

 

Since  log x - 7  is in a denominator, we have the restriction  log x - 7 ≠ 0 .

log x  ≠  7

x  ≠  107

x  ≠  10 000 000

 

So the domain is all real  x  values such that  x > 0  and  x  ≠  10 000 000

hectictar  Jan 18, 2018

29 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.