+0  
 
0
5887
1
avatar+912 

Drag and drop a statement or reason to each box to complete the proof.

 

Given: parallelogram MNPQ

Prove: ∠N≅∠Q

 

Statement                                                                                        Reason

parallelogram MNPQ                                                                       Given

MN¯¯¯¯¯¯¯ ≅ QP¯¯¯¯¯      ( <-- these 2 are together.)   (                                    )

MQ¯¯¯¯¯¯   ≅ NP¯¯¯¯¯¯

(                              )                                                         (                                    ) 

△MQP ≅ △PNM                                                               (                                     ) 

(                              )                                                                        CPCTC

 

OPTIONS: 

 Nov 14, 2017

Best Answer 

 #1
avatar+2446 
+2

This may help you!

 

\(\overline{MN}\cong\overline{QP}\)

\(\overline{MQ}\cong\overline{NP}\)

Property of a Parallelogram (If a quadrilateral is a parallelogram, then its opposite sides are congruent)
\(\overline{MP}\cong\overline{MP}\)Reflexive Property of Congruence
\(\triangle MQP\cong\triangle PNM\)Side-Side-Side Triangle Congruence Theorem 
  
 Nov 14, 2017
edited by TheXSquaredFactor  Nov 14, 2017
 #1
avatar+2446 
+2
Best Answer

This may help you!

 

\(\overline{MN}\cong\overline{QP}\)

\(\overline{MQ}\cong\overline{NP}\)

Property of a Parallelogram (If a quadrilateral is a parallelogram, then its opposite sides are congruent)
\(\overline{MP}\cong\overline{MP}\)Reflexive Property of Congruence
\(\triangle MQP\cong\triangle PNM\)Side-Side-Side Triangle Congruence Theorem 
  
TheXSquaredFactor Nov 14, 2017
edited by TheXSquaredFactor  Nov 14, 2017

3 Online Users

avatar