+0  
 
+2
6078
1
avatar+292 

Given: parallelogram EFGH

Prove: EG¯¯¯¯¯ bisects HF¯¯¯¯¯¯ and HF¯¯¯¯¯¯ bisects EG¯¯¯¯¯ .

 Dec 11, 2017

Best Answer 

 #1
avatar+2446 
+2
parallelogram EFGH

Given

\(\overline{EF}\cong\overline{HG}\)Property of a Parallelogram (If a quadrilateral is a parallelogram, then its opposite sides are congruent)
\(\overline{EF}\parallel\overline{HG}\)Definition of a Parallelogram (A quadrilateral that has opposite sides parallel is a parallelogram)
\(\textcolor{red}{\angle FEG\cong\angle HGE\\ \angle EFH\cong\angle FHG}\)Alternate Interior Angles Theorem
\(\triangle EKF\cong\triangle GKH\)ASA Congruence Postulate
\(\textcolor{red}{\overline{EK}\cong\overline{KG}\\ \overline{FK}\cong\overline{KH}}\)CPCTC
  
 Dec 11, 2017
edited by TheXSquaredFactor  Dec 11, 2017
 #1
avatar+2446 
+2
Best Answer
parallelogram EFGH

Given

\(\overline{EF}\cong\overline{HG}\)Property of a Parallelogram (If a quadrilateral is a parallelogram, then its opposite sides are congruent)
\(\overline{EF}\parallel\overline{HG}\)Definition of a Parallelogram (A quadrilateral that has opposite sides parallel is a parallelogram)
\(\textcolor{red}{\angle FEG\cong\angle HGE\\ \angle EFH\cong\angle FHG}\)Alternate Interior Angles Theorem
\(\triangle EKF\cong\triangle GKH\)ASA Congruence Postulate
\(\textcolor{red}{\overline{EK}\cong\overline{KG}\\ \overline{FK}\cong\overline{KH}}\)CPCTC
  
TheXSquaredFactor Dec 11, 2017
edited by TheXSquaredFactor  Dec 11, 2017

0 Online Users