+0  
 
0
440
1
avatar

ds/dt=t(3t-2) and s=0 when t=1

Guest Jan 7, 2015

Best Answer 

 #1
avatar+19604 
+10

ds/dt=t(3t-2) and s=0 when t=1

$$\small{\text{
$
\begin{array}{rcl}
\dfrac{\ ds}{\ dt} &=& t(3t-2) = 3t^2-2t \\\\
\ ds &=& (3t^2-2t) \ dt \quad | \quad \int\\ \\
\int{\ ds} = s &=& \int{ (3t^2-2t) \ dt }\\ \\
s &=& 3\int{t^2\ dt }-2\int{t\ dt } \\ \\
s &=& 3 \frac{t^3}{3} -2\frac{t^2}{2} +c\\ \\
s &=& t^3 - t^2 +c\\ \\
\end{array}
$
}}$$

$$\small{\text{
$
t = 1 $ and $ s= 0 $ so we find c :
$
\begin{array}{rcl}
0 & = & 1^3 - 1^2 + c \\
0 & = & 0 + c \\
0 & = & c
\end{Array}
$
}}$\\$
\small{\text{
$
\boxed{s = t^3-t^2 }
$
}}$$

heureka  Jan 7, 2015
 #1
avatar+19604 
+10
Best Answer

ds/dt=t(3t-2) and s=0 when t=1

$$\small{\text{
$
\begin{array}{rcl}
\dfrac{\ ds}{\ dt} &=& t(3t-2) = 3t^2-2t \\\\
\ ds &=& (3t^2-2t) \ dt \quad | \quad \int\\ \\
\int{\ ds} = s &=& \int{ (3t^2-2t) \ dt }\\ \\
s &=& 3\int{t^2\ dt }-2\int{t\ dt } \\ \\
s &=& 3 \frac{t^3}{3} -2\frac{t^2}{2} +c\\ \\
s &=& t^3 - t^2 +c\\ \\
\end{array}
$
}}$$

$$\small{\text{
$
t = 1 $ and $ s= 0 $ so we find c :
$
\begin{array}{rcl}
0 & = & 1^3 - 1^2 + c \\
0 & = & 0 + c \\
0 & = & c
\end{Array}
$
}}$\\$
\small{\text{
$
\boxed{s = t^3-t^2 }
$
}}$$

heureka  Jan 7, 2015

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.