ds/dt=t(3t-2) and s=0 when t=1
ds dt=t(3t−2)=3t2−2t ds=(3t2−2t) dt|∫∫ ds=s=∫(3t2−2t) dts=3∫t2 dt−2∫t dts=3t33−2t22+cs=t3−t2+c
\small{\text{ $ t = 1 $ and $ s= 0 $ so we find c : $ \begin{array}{rcl} 0 & = & 1^3 - 1^2 + c \\ 0 & = & 0 + c \\ 0 & = & c \end{Array} $ }}$\\$ \small{\text{ $ \boxed{s = t^3-t^2 } $ }}
ds/dt=t(3t-2) and s=0 when t=1
ds dt=t(3t−2)=3t2−2t ds=(3t2−2t) dt|∫∫ ds=s=∫(3t2−2t) dts=3∫t2 dt−2∫t dts=3t33−2t22+cs=t3−t2+c
\small{\text{ $ t = 1 $ and $ s= 0 $ so we find c : $ \begin{array}{rcl} 0 & = & 1^3 - 1^2 + c \\ 0 & = & 0 + c \\ 0 & = & c \end{Array} $ }}$\\$ \small{\text{ $ \boxed{s = t^3-t^2 } $ }}