+0  
 
0
513
3
avatar

((e^x-e^(-x))/2)^2-1

math algebra
 Aug 23, 2014

Best Answer 

 #2
avatar+20848 
+10

((e^x-e^(-x))/2)^2-1

$$\left(
\dfrac{e^x-e^{-x}}{2}
\right) ^2
-1
=\sinh^2{x}-1 = \cosh^2{x}-2
=
\left(
\dfrac{e^x+e^{-x}}{2}
\right) ^2
-2
\\\\
( \cosh^2{x}-\sinh^2{x} =1 )$$

.
 Aug 25, 2014
 #1
avatar+95356 
+5

 

 

$$\left( \frac{e^x-e^{-x}}{2}\right)^2-1\\\\
= \frac{(e^x-e^{-x})^2}{2^2}-1\\\\
= \frac{e^{2x}-2e^xe^{-x}+e^{-2x}}{4}-\frac{4}{4}\\\\
= \frac{e^{2x}-2+e^{-2x}}{4}-\frac{4}{4}\\\\
= \frac{e^{2x}+e^{-2x}-6}{4}\\\\
\mbox{Do you want me to keep going? It is probably finish now:)}\\\\
= \frac{e^{2x}+\frac{1}{e^{2x}}-6}{4}\\\\
= \frac{\frac{e^{4x}+1-6e^{2x}}{e^{2x}}}{4}\\\\
= \frac{e^{4x}+1-6e^{2x}}{4e^{2x}}\\\\
= \frac{e^{4x}-6e^{2x}+1}{4e^{2x}}\\\\$$

.
 Aug 24, 2014
 #2
avatar+20848 
+10
Best Answer

((e^x-e^(-x))/2)^2-1

$$\left(
\dfrac{e^x-e^{-x}}{2}
\right) ^2
-1
=\sinh^2{x}-1 = \cosh^2{x}-2
=
\left(
\dfrac{e^x+e^{-x}}{2}
\right) ^2
-2
\\\\
( \cosh^2{x}-\sinh^2{x} =1 )$$

heureka Aug 25, 2014
 #3
avatar+95356 
0

Thanks Heureka,

I had forgotten about cosh and sinh    

 Aug 25, 2014

42 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.