e4x-13e2x+12=0
e4x−13e2x+12=0
This can be written as:
(e2x)2−13e2x+12=0
which can be written in turn as:
(e2x−1)(e2x−12)=0
So we have:
1.
e2x=1sox=0
2.
e2x=122x=ln12x=ln122
.