Mike sold caramel corn for $10, buttered popcorn for $8, and lightly buttered popcorn for $7. At the end of the day, Mike had sold 400 items and made $3,272. If he sold twice as many lightly buttered popcorn boxes as buttered popcorn, how many of each type of popcorn did he sell?
Let the number of buttered popcorn =P, then:
The number of lightly-buttered popcorn =2P
Let the number of caramel corn sold =C
P + 2P + C = 400
8P + 14P + 10C =3,272, solve for C, P
Using substitution, we get:
P = 91 - buttered popcorns sold
91 x 2 =182 - lightly-buttered popcorns sold
C = 127 - caramel popcorns sold.
Let the number of buttered popcorn =P, then:
The number of lightly-buttered popcorn =2P
Let the number of caramel corn sold =C
P + 2P + C = 400
8P + 14P + 10C =3,272, solve for C, P
Using substitution, we get:
P = 91 - buttered popcorns sold
91 x 2 =182 - lightly-buttered popcorns sold
C = 127 - caramel popcorns sold.