+0  
 
0
689
3
avatar

6/7(3-5n) ≥ 3/5(1-9n)

 

For this problem, do I start off by eliminating the 3/5 by multiplying the reciprocal of 3/5 on both sides?

 Feb 20, 2016

Best Answer 

 #2
avatar+129849 
+10

(6/7)(3-5n) ≥ (3/5)(1-9n)

 

Let's start by multiplying both sides by the common denominator of 7 and 5, i.e., 35.....this will clear the fractions

 

(35) (6/7)(3-5n) ≥ (35) (3/5)(1-9n)  =

 

30 (3 - 5n)  ≥  21 (1 - 9n)       simplify

 

90 - 150n ≥  21 - 189n      add  150n  to both sides, subtract 21 from both sides

 

69 ≥  - 39n       divide both sides by -39   and reverse the inequality sign

 

-69/39 ≤ n         reduce the fraction by dividing top/bottom by 3

 

-23/13 ≤  n    or     written another way, 

 

n ≥  -23 / 13

 

 

 

 

cool cool cool

 Feb 20, 2016
 #2
avatar+129849 
+10
Best Answer

(6/7)(3-5n) ≥ (3/5)(1-9n)

 

Let's start by multiplying both sides by the common denominator of 7 and 5, i.e., 35.....this will clear the fractions

 

(35) (6/7)(3-5n) ≥ (35) (3/5)(1-9n)  =

 

30 (3 - 5n)  ≥  21 (1 - 9n)       simplify

 

90 - 150n ≥  21 - 189n      add  150n  to both sides, subtract 21 from both sides

 

69 ≥  - 39n       divide both sides by -39   and reverse the inequality sign

 

-69/39 ≤ n         reduce the fraction by dividing top/bottom by 3

 

-23/13 ≤  n    or     written another way, 

 

n ≥  -23 / 13

 

 

 

 

cool cool cool

CPhill Feb 20, 2016
 #3
avatar
0

thanks! appreciate it

 Feb 20, 2016

1 Online Users