+0  
 
0
136
3
avatar

In the coordinate plane, let  A = (-2,0) and B = (2,0) Let C be a variable point on the ellipse \frac{x^2}{4} + y^2 = 1
and let  H be the orthocenter of triangle ABC  As C varies on the ellipse, the point H  traces a curve. Find the area inside the curve.

 May 22, 2022
 #1
avatar
0

HELP PLEASE

 May 22, 2022
 #2
avatar
0

The area is 12*pi.

 May 22, 2022
 #3
avatar+9461 
0

I have made a GeoGebra simulation of the problem, and it appears that the curve that H traces is an ellipse with major axis 4 units and minor axis 2 units.

 

GeoGebra simulation: https://www.geogebra.org/calculator/my8uamwy

 

Therefore, the area inside the curve is \(\pi \cdot 4 \cdot 2 = 8\pi\text{ square units}\).

 May 22, 2022

31 Online Users

avatar