+0  
 
0
437
1
avatar

Find the equation of a line passing through (15,-7) perpendicular to the line 5x+6y=11

 Mar 10, 2021
 #1
avatar+592 
0

5x + 6y = 11 

6y = -5x + 11

y = \(-\frac{5}{6} x + \frac{11}{6}\)

 

Since the slope is \(-\frac{5}{6}\) , the perpendicular slope to it is \(\frac{6}{5}\)
 

y = mx + b  --> (15, -7)

\(-7 = \frac{6}{5}(15) + b\)

 \(-7 = 18 + b\)

\(b = -25\)

 

This means the equation of this line is:
\(y = \frac{6}{5}x - 25\)

 Mar 10, 2021

0 Online Users