We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

The equation 24x2+25x−47ax−2=−8x−3−53ax−2 is true for all values of x≠2a, where a is a constant.

What is the value of a?

A) -16

B) -3

C) 3

D) 16

bigbrotheprodude Feb 21, 2019

#1**+1 **

There are two ways to solve this question. The faster way is to multiply each side of the given equation by ax−2 (so you can get rid of the fraction). When you multiply each side by ax−2, you should have:

24x2+25x−47=(−8x−3)(ax−2)−53

You should then multiply (−8x−3) and (ax−2) using FOIL.

24x2+25x−47=−8ax2−3ax+16x+6−53

Then, reduce on the right side of the equation

24x2+25x−47=−8ax2−3ax+16x−47

Since the coefficients of the x2-term have to be equal on both sides of the equation, −8a=24, or a=−3.

bigbrotheprodude Feb 22, 2019