We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
117
1
avatar

Hiiii!!! Could someone please explain how this works? May god bless you

 

 May 11, 2019

Best Answer 

 #1
avatar+8744 
+3

If the slope of line DE  =  the slope of line BC, then DE  is parallel to  BC.

 

D  is the midpoint of AB, so    D   =   \((\frac{4+2}{2},\frac{6-2}{2})\)   =   (3, 2)

 

E  is the midpoint of  AC, so   E   =   \((\frac{4-2}{2},\frac{6-4}{2})\)   =   (1, 1)

 

slope of  DE  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{2-1}{3-1}\,=\,\frac{1}{2}\)

 

slope of  BC  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{-4+2}{-2-2}\,=\,\frac{-2}{-4}\,=\,\frac{1}{2}\)

 

Since the slope of  DE  and the slope of  BC  both equal  \(\frac12\) ,  DE  is parallel to  BC.

 

Here's a graph to check:  https://www.desmos.com/calculator/5k2mf7pbjj

 May 11, 2019
 #1
avatar+8744 
+3
Best Answer

If the slope of line DE  =  the slope of line BC, then DE  is parallel to  BC.

 

D  is the midpoint of AB, so    D   =   \((\frac{4+2}{2},\frac{6-2}{2})\)   =   (3, 2)

 

E  is the midpoint of  AC, so   E   =   \((\frac{4-2}{2},\frac{6-4}{2})\)   =   (1, 1)

 

slope of  DE  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{2-1}{3-1}\,=\,\frac{1}{2}\)

 

slope of  BC  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{-4+2}{-2-2}\,=\,\frac{-2}{-4}\,=\,\frac{1}{2}\)

 

Since the slope of  DE  and the slope of  BC  both equal  \(\frac12\) ,  DE  is parallel to  BC.

 

Here's a graph to check:  https://www.desmos.com/calculator/5k2mf7pbjj

hectictar May 11, 2019

27 Online Users

avatar
avatar