+0  
 
0
160
1
avatar

Hiiii!!! Could someone please explain how this works? May god bless you

 

 May 11, 2019

Best Answer 

 #1
avatar+8842 
+3

If the slope of line DE  =  the slope of line BC, then DE  is parallel to  BC.

 

D  is the midpoint of AB, so    D   =   \((\frac{4+2}{2},\frac{6-2}{2})\)   =   (3, 2)

 

E  is the midpoint of  AC, so   E   =   \((\frac{4-2}{2},\frac{6-4}{2})\)   =   (1, 1)

 

slope of  DE  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{2-1}{3-1}\,=\,\frac{1}{2}\)

 

slope of  BC  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{-4+2}{-2-2}\,=\,\frac{-2}{-4}\,=\,\frac{1}{2}\)

 

Since the slope of  DE  and the slope of  BC  both equal  \(\frac12\) ,  DE  is parallel to  BC.

 

Here's a graph to check:  https://www.desmos.com/calculator/5k2mf7pbjj

 May 11, 2019
 #1
avatar+8842 
+3
Best Answer

If the slope of line DE  =  the slope of line BC, then DE  is parallel to  BC.

 

D  is the midpoint of AB, so    D   =   \((\frac{4+2}{2},\frac{6-2}{2})\)   =   (3, 2)

 

E  is the midpoint of  AC, so   E   =   \((\frac{4-2}{2},\frac{6-4}{2})\)   =   (1, 1)

 

slope of  DE  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{2-1}{3-1}\,=\,\frac{1}{2}\)

 

slope of  BC  =  \(\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{-4+2}{-2-2}\,=\,\frac{-2}{-4}\,=\,\frac{1}{2}\)

 

Since the slope of  DE  and the slope of  BC  both equal  \(\frac12\) ,  DE  is parallel to  BC.

 

Here's a graph to check:  https://www.desmos.com/calculator/5k2mf7pbjj

hectictar May 11, 2019

32 Online Users

avatar
avatar