+0  
 
+1
86
2
avatar+544 

thank you in advance

 

 

winkwinkwink

lynx7  Apr 13, 2018
 #1
avatar+86931 
+3

y  = pq^x

 

Note that when  x  = 0,   then y  = 5

This suggests that

5 = pq^0

5  = p (1)

5  = p

 

And the point  (4, 405)  is on the graph..so

 

405  = 5q^(4)    divide both sides by 5

81  = q^4        take the 4th root of each side and we get that

3  = q

 

So....to find  k   when  x  =2, we have

 

k  =  5*(3)^2   =  5 * 9   =  45

 

 

cool cool cool

CPhill  Apr 13, 2018
 #2
avatar+19496 
+1

 equations simultaneous non-linear

 

 

geometric sequence: \(\text{$a_1 = p$, $a_2 = pq$, $a_3 = pq^2$, $a_4=pq^3$, $a_5 = pq^4$, $\ldots$}\)

 

\(\text{ $k \quad(a_3=pq^2)$ is the geometric mean of $y = 5 \quad(a_1=p)$ and $y = 405 \quad(a_5=pq^4)$ } \\ \huge{ \begin{array}{|rcll|} \hline k&=&\sqrt{5\cdot 405} \\ &=&\sqrt{2025} \\ &=& 45 \\ \hline \end{array} }\)

 

laugh

heureka  Apr 16, 2018
edited by heureka  Apr 16, 2018
edited by heureka  Apr 16, 2018

18 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.