+0  
 
0
69
3
avatar

Evaluate $a^3 + \dfrac{1}{a^3}$ if $a+\dfrac{1}{a} = 6$.

Guest Sep 28, 2017

Best Answer 

 #3
avatar+76821 
+2

Evaluate   a^3  + 1/a^3    if   a   + 1/a  = 6

 

If   a   + 1/a   = 6     square both sides

 

(a^2 + 2  + 1/a^2)   = 36

 

a^2  + 1/a^2    =   34

 

Note   that         a^3  + 1/a^3    can be factored as a sum of cubes....so we have

 

a^3  + 1/a^3  =

 

( a  +  1/a)  ( a^2 -  1 +  1/a^2)

 

(6)  ( a^2 + 1/a^2  - 1 )

 

(6) ( 34 - 1)  =

 

6 *  33  =

 

198

 

 

cool cool cool

CPhill  Sep 29, 2017
edited by CPhill  Sep 29, 2017
Sort: 

3+0 Answers

 #1
avatar
0

Solve for a:
a^3 + 1/a^3 = 6

Bring a^3 + 1/a^3 together using the common denominator a^3:
(a^6 + 1)/a^3 = 6

Multiply both sides by a^3:
a^6 + 1 = 6 a^3

Subtract 6 a^3 from both sides:
a^6 - 6 a^3 + 1 = 0

Substitute x = a^3:
x^2 - 6 x + 1 = 0

Subtract 1 from both sides:
x^2 - 6 x = -1

Add 9 to both sides:
x^2 - 6 x + 9 = 8

Write the left hand side as a square:
(x - 3)^2 = 8

Take the square root of both sides:
x - 3 = 2 sqrt(2) or x - 3 = -2 sqrt(2)

Add 3 to both sides:
x = 3 + 2 sqrt(2) or x - 3 = -2 sqrt(2)

Substitute back for x = a^3:
a^3 = 3 + 2 sqrt(2) or x - 3 = -2 sqrt(2)

Taking cube roots gives (3 + 2 sqrt(2))^(1/3) times the third roots of unity:
a = -(-3 - 2 sqrt(2))^(1/3) or a = (3 + 2 sqrt(2))^(1/3) or a = (-1)^(2/3) (3 + 2 sqrt(2))^(1/3) or x - 3 = -2 sqrt(2)

Add 3 to both sides:
a = -(-3 - 2 sqrt(2))^(1/3) or a = (3 + 2 sqrt(2))^(1/3) or a = (-1)^(2/3) (3 + 2 sqrt(2))^(1/3) or x = 3 - 2 sqrt(2)

Substitute back for x = a^3:
a = -(-3 - 2 sqrt(2))^(1/3) or a = (3 + 2 sqrt(2))^(1/3) or a = (-1)^(2/3) (3 + 2 sqrt(2))^(1/3) or a^3 = 3 - 2 sqrt(2)

Taking cube roots gives (3 - 2 sqrt(2))^(1/3) times the third roots of unity:
a = -(-3 - 2 sqrt(2))^(1/3)   or   a = (3 + 2 sqrt(2))^(1/3)   or   a = (-1)^(2/3) (3 + 2 sqrt(2))^(1/3)   or a = (3 - 2 sqrt(2))^(1/3)   or   a = (-1)^(2/3) (3 - 2 sqrt(2))^(1/3)   or   a = -(2 sqrt(2) - 3)^(1/3)

Guest Sep 29, 2017
 #2
avatar
0

Solve for a:
a + 1/a = 6

Bring a + 1/a together using the common denominator a:
(a^2 + 1)/a = 6

Multiply both sides by a:
a^2 + 1 = 6 a

Subtract 6 a from both sides:
a^2 - 6 a + 1 = 0

Subtract 1 from both sides:
a^2 - 6 a = -1

Add 9 to both sides:
a^2 - 6 a + 9 = 8

Write the left hand side as a square:
(a - 3)^2 = 8

Take the square root of both sides:
a - 3 = 2 sqrt(2) or a - 3 = -2 sqrt(2)

Add 3 to both sides:
a = 3 + 2 sqrt(2) or a - 3 = -2 sqrt(2)

Add 3 to both sides:
a = 3 + 2 sqrt(2)      or         a = 3 - 2 sqrt(2)

 

 [3 +2 sqrt(2)]^3 + 1/ [3 + 2 sqrt(2)]^3 =198

Guest Sep 29, 2017
 #3
avatar+76821 
+2
Best Answer

Evaluate   a^3  + 1/a^3    if   a   + 1/a  = 6

 

If   a   + 1/a   = 6     square both sides

 

(a^2 + 2  + 1/a^2)   = 36

 

a^2  + 1/a^2    =   34

 

Note   that         a^3  + 1/a^3    can be factored as a sum of cubes....so we have

 

a^3  + 1/a^3  =

 

( a  +  1/a)  ( a^2 -  1 +  1/a^2)

 

(6)  ( a^2 + 1/a^2  - 1 )

 

(6) ( 34 - 1)  =

 

6 *  33  =

 

198

 

 

cool cool cool

CPhill  Sep 29, 2017
edited by CPhill  Sep 29, 2017

9 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details