1. Evaluate 10001^2 - 9999^2
2. Evaluate (-5+2i)/(1+7i)
i=sqrt(-1)
Write your answer in the form a+bi
1. \(10001^2 -9999^2 = (10001 + 9999)(10001 - 9999) = (20000)(2) = \boxed{40000}\)
2. \(\frac{-5+2i}{1+7i} \cdot \frac{1-7i}{1-7i} = \frac{-5+2i+35i-14i^2}{50} = \boxed{\frac{9+37i}{50}}\)
1. \(10001^2 -9999^2 = (10001 + 9999)(10001 - 9999) = (20000)(2) = \boxed{40000}\)
2. \(\frac{-5+2i}{1+7i} \cdot \frac{1-7i}{1-7i} = \frac{-5+2i+35i-14i^2}{50} = \boxed{\frac{9+37i}{50}}\)