+0  
 
0
531
2
avatar

Evaluate30![mod 899]

Guest Nov 21, 2014

Best Answer 

 #2
avatar+19990 
+5

30! [mod 899] ?

$$30! \mod 899 \stackrel{?}{=}$$

$$\small{\text{
$ 899 = 29 * 31 = p*q \quad | \quad $ let $ p = 29 $ and $ q=31 $ so \textcolor[rgb]{1,0,0}{p and q are relatively prim!}
}}$$

I.  $$\small{\text{
$ \textcolor[rgb]{0,0,1}{30! \mod p = 0} , $ because $ p = 29 $ is divider of $ 30! \ (30! = 30*\textcolor[rgb]{1,0,0}{29}*28*...3*2*1)
$
}}$$
 

$$\small{\text{
$ \textcolor[rgb]{0,0,1}{30! \mod p = r} , $ if $ p = 29 $ we have $ r = 0
$
}}$$

II. $$\small{\text{
$ \textcolor[rgb]{0,0,1}{30! \mod q = s } \quad q=31 $ is a prime number so $ \textcolor[rgb]{0,0,1}{(31-1)! \equiv -1 \mod 31} $ [Wilson]
}}$$

$$\small{\text{
$ (31-1)! \equiv -1 + 31 \mod 31 $ or $ 30! \equiv \textcolor[rgb]{0,0,1}{30} \mod 31 $ we have $ s=30 $
}}$$

III. 

Since p  and q  are relatively prime, there are integers a  and b  such that  ap+bq=1. You can find a  and b  using the Extended Euclidean algorithm.

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

So a=46 and b=-43, so 29*(46) + 31*(-43) = 1

IV.

Then

 $$\small{\text{
$
\begin{array}{rcl}
30! \mod (p*q) &= &a*p*s + b*q*r \\
30! \mod (899) &= &46*29*30 + (-43)*31*0 = 46*29*30 = 40020
\end{array}
$
}}$$

V.

$$30! \mod 899 = 40020 \mod 899 = 464$$

heureka  Nov 21, 2014
 #1
avatar+26965 
+5

Just use the on-site calculator:

$$\left({\mathtt{30}}{!}\right) {mod} \left({\mathtt{899}}\right) = {\mathtt{464}}$$

.

Alan  Nov 21, 2014
 #2
avatar+19990 
+5
Best Answer

30! [mod 899] ?

$$30! \mod 899 \stackrel{?}{=}$$

$$\small{\text{
$ 899 = 29 * 31 = p*q \quad | \quad $ let $ p = 29 $ and $ q=31 $ so \textcolor[rgb]{1,0,0}{p and q are relatively prim!}
}}$$

I.  $$\small{\text{
$ \textcolor[rgb]{0,0,1}{30! \mod p = 0} , $ because $ p = 29 $ is divider of $ 30! \ (30! = 30*\textcolor[rgb]{1,0,0}{29}*28*...3*2*1)
$
}}$$
 

$$\small{\text{
$ \textcolor[rgb]{0,0,1}{30! \mod p = r} , $ if $ p = 29 $ we have $ r = 0
$
}}$$

II. $$\small{\text{
$ \textcolor[rgb]{0,0,1}{30! \mod q = s } \quad q=31 $ is a prime number so $ \textcolor[rgb]{0,0,1}{(31-1)! \equiv -1 \mod 31} $ [Wilson]
}}$$

$$\small{\text{
$ (31-1)! \equiv -1 + 31 \mod 31 $ or $ 30! \equiv \textcolor[rgb]{0,0,1}{30} \mod 31 $ we have $ s=30 $
}}$$

III. 

Since p  and q  are relatively prime, there are integers a  and b  such that  ap+bq=1. You can find a  and b  using the Extended Euclidean algorithm.

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

So a=46 and b=-43, so 29*(46) + 31*(-43) = 1

IV.

Then

 $$\small{\text{
$
\begin{array}{rcl}
30! \mod (p*q) &= &a*p*s + b*q*r \\
30! \mod (899) &= &46*29*30 + (-43)*31*0 = 46*29*30 = 40020
\end{array}
$
}}$$

V.

$$30! \mod 899 = 40020 \mod 899 = 464$$

heureka  Nov 21, 2014

35 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.