Let $e(x)$ be an even function and let $o(x)$ be an odd function, such that \[e(x) + o(x) = x^2 + x^3\] for all $x.$ Let $f(x) = e(x) + o(x).$ Find $f(2).$
f(2) = (2)^2 + (2)^3 = 4 + 8 = 12