+0  
 
0
746
1
avatar+1836 

Expand $\left(x^2+\frac{1}{x}\right)^3$. (Write the terms with higher degree first, so for example an $x^2$ term would come before $x$ or $\frac{1}{x}$.)

 May 7, 2015

Best Answer 

 #1
avatar+129852 
+10

(x^2 + x^-1)^3

[x^2]^3 + 3(x^2)^2*(x^-1) + 3(x^2)*(x^-1)^2 + (x^-1)^3  =

x^6  + 3x^3 + 3 + 1/x^3

Note, Mellie....this might also be shown with the constant term, last....thusly:

x^6  + 3x^3  + 1/x^3   + 3

 

  

 May 7, 2015
 #1
avatar+129852 
+10
Best Answer

(x^2 + x^-1)^3

[x^2]^3 + 3(x^2)^2*(x^-1) + 3(x^2)*(x^-1)^2 + (x^-1)^3  =

x^6  + 3x^3 + 3 + 1/x^3

Note, Mellie....this might also be shown with the constant term, last....thusly:

x^6  + 3x^3  + 1/x^3   + 3

 

  

CPhill May 7, 2015

1 Online Users