+0  
 
+1
189
4
avatar

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 May 3, 2018
edited by Guest  May 3, 2018
edited by Guest  May 3, 2018

Best Answer 

 #4
avatar+20866 
+1

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& x + 2 \\ f(-3) &=& -3 + 2 \\ &=& -1 \\\\ g(x) &=& \frac{1}{f(x)} \\ g(f(-3)) &=& g(-1) \\ &=& \frac{1}{f(-1)} \quad & | \quad f(-1) = -1 + 2 = 1 \\ &=& \frac{1}{1} \\ &=& 1 \\\\ \mathbf{g(f(-3))} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

 May 3, 2018
 #1
avatar
0

Answer is not -1 apparently...

 May 3, 2018
 #2
avatar
0

Hint: g(x) is also, 1/x+2. 

 May 3, 2018
 #3
avatar+9807 
+1

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

laugh

 May 3, 2018
 #4
avatar+20866 
+1
Best Answer

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& x + 2 \\ f(-3) &=& -3 + 2 \\ &=& -1 \\\\ g(x) &=& \frac{1}{f(x)} \\ g(f(-3)) &=& g(-1) \\ &=& \frac{1}{f(-1)} \quad & | \quad f(-1) = -1 + 2 = 1 \\ &=& \frac{1}{1} \\ &=& 1 \\\\ \mathbf{g(f(-3))} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka May 3, 2018

26 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.