+0  
 
+1
158
4
avatar

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

Guest May 3, 2018
edited by Guest  May 3, 2018
edited by Guest  May 3, 2018

Best Answer 

 #4
avatar+20151 
+1

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& x + 2 \\ f(-3) &=& -3 + 2 \\ &=& -1 \\\\ g(x) &=& \frac{1}{f(x)} \\ g(f(-3)) &=& g(-1) \\ &=& \frac{1}{f(-1)} \quad & | \quad f(-1) = -1 + 2 = 1 \\ &=& \frac{1}{1} \\ &=& 1 \\\\ \mathbf{g(f(-3))} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka  May 3, 2018
 #1
avatar
0

Answer is not -1 apparently...

Guest May 3, 2018
 #2
avatar
0

Hint: g(x) is also, 1/x+2. 

Guest May 3, 2018
 #3
avatar+9681 
+1

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

laugh

Omi67  May 3, 2018
 #4
avatar+20151 
+1
Best Answer

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& x + 2 \\ f(-3) &=& -3 + 2 \\ &=& -1 \\\\ g(x) &=& \frac{1}{f(x)} \\ g(f(-3)) &=& g(-1) \\ &=& \frac{1}{f(-1)} \quad & | \quad f(-1) = -1 + 2 = 1 \\ &=& \frac{1}{1} \\ &=& 1 \\\\ \mathbf{g(f(-3))} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka  May 3, 2018

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.