+0  
 
+1
54
4
avatar

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

Guest May 3, 2018
edited by Guest  May 3, 2018
edited by Guest  May 3, 2018

Best Answer 

 #4
avatar+19344 
+1

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& x + 2 \\ f(-3) &=& -3 + 2 \\ &=& -1 \\\\ g(x) &=& \frac{1}{f(x)} \\ g(f(-3)) &=& g(-1) \\ &=& \frac{1}{f(-1)} \quad & | \quad f(-1) = -1 + 2 = 1 \\ &=& \frac{1}{1} \\ &=& 1 \\\\ \mathbf{g(f(-3))} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka  May 3, 2018
Sort: 

4+0 Answers

 #1
avatar
0

Answer is not -1 apparently...

Guest May 3, 2018
 #2
avatar
0

Hint: g(x) is also, 1/x+2. 

Guest May 3, 2018
 #3
avatar+9333 
+1

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

laugh

Omi67  May 3, 2018
 #4
avatar+19344 
+1
Best Answer

Let $f(x) = x + 2$ and $g(x) = 1/f(x)$. What is $g(f(-3))$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& x + 2 \\ f(-3) &=& -3 + 2 \\ &=& -1 \\\\ g(x) &=& \frac{1}{f(x)} \\ g(f(-3)) &=& g(-1) \\ &=& \frac{1}{f(-1)} \quad & | \quad f(-1) = -1 + 2 = 1 \\ &=& \frac{1}{1} \\ &=& 1 \\\\ \mathbf{g(f(-3))} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka  May 3, 2018

24 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy