+0  
 
0
48
1
avatar

4^(x) -2^(x+2) +4=0

Guest Oct 26, 2017

Best Answer 

 #1
avatar+18712 
+2

exponential problem

4^(x) -2^(x+2) +4=0

 

\(\begin{array}{|rcll|} \hline 4^{x} -2^{x+2} +4 &=& 0 \\ (2\cdot2)^{x} -2^x\cdot2^2 +2^2 &=& 0 \\ (2^2)^{x} -2^x\cdot2^2 +2^2 &=& 0 \quad & | \quad (2^2)^{x} = 2^{2x} = 2^{x\cdot 2}= (2^x)^2 \\ (2^x)^2 -2^x\cdot2\cdot 2 +2^2 &=& 0 \quad & | \quad \text{binom } \\ (2^x-2)^2 &=& 0 \quad & | \quad \text{square root both sides}\\ 2^x-2 &=& 0 \quad & | \quad +2 \\ 2^x &=& 2 \quad & | \quad 2=2^1 \\ 2^x &=& 2^1 \\ \mathbf{x} &\mathbf{=}& \mathbf{ 1} \\ \hline \end{array}\)

 

laugh

heureka  Oct 26, 2017
Sort: 

1+0 Answers

 #1
avatar+18712 
+2
Best Answer

exponential problem

4^(x) -2^(x+2) +4=0

 

\(\begin{array}{|rcll|} \hline 4^{x} -2^{x+2} +4 &=& 0 \\ (2\cdot2)^{x} -2^x\cdot2^2 +2^2 &=& 0 \\ (2^2)^{x} -2^x\cdot2^2 +2^2 &=& 0 \quad & | \quad (2^2)^{x} = 2^{2x} = 2^{x\cdot 2}= (2^x)^2 \\ (2^x)^2 -2^x\cdot2\cdot 2 +2^2 &=& 0 \quad & | \quad \text{binom } \\ (2^x-2)^2 &=& 0 \quad & | \quad \text{square root both sides}\\ 2^x-2 &=& 0 \quad & | \quad +2 \\ 2^x &=& 2 \quad & | \quad 2=2^1 \\ 2^x &=& 2^1 \\ \mathbf{x} &\mathbf{=}& \mathbf{ 1} \\ \hline \end{array}\)

 

laugh

heureka  Oct 26, 2017

22 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details