+0  
 
0
601
4
avatar+1760 

$$Express $0.\overline{21}_3$ as a base 10 fraction in reduced form.$$

Mellie  Jun 7, 2015

Best Answer 

 #3
avatar+91038 
+15

You got me thinking Chris :)

 

$$Express $0.\overline{21}_3$ as a base 10 fraction in reduced form.$$

 

$$21_3=2*3+1=7$$

 

So we have here a sum

 

    $$\\0.\overline{21}_3=\frac{7}{3^2}+\frac{7}{3^4}+\frac{7}{3^6}+\frac{7}{3^8}+...\\\\
$This is the infinite sum of a GP$\\\\
a=\frac{7}{9}\qquad r=\frac{1}{9}\\\\
S_{\infty}=\frac{a}{1-r}}\\\\
S_{\infty}=\frac{\frac{7}{9}}{1-\frac{1}{9}}}\\\\
S_{\infty}=\frac{7}{9}\div \frac{8}{9}}\\\\
S_{\infty}=\frac{7}{9}\times \frac{9}{8}}\\\\
S_{\infty}=\frac{7}{8}\\\\$$

Melody  Jun 8, 2015
Sort: 

4+0 Answers

 #1
avatar+78643 
+15

We have two sums to consider.....

 

2*3^(-1) + 2*3^(-3) + 2*3^(-5)+ ....+2*3^-(2n-1)  =  (2/3) /(1 - 3^(-2)) = (2/3) / (1 - 1/9)  =

(2/3)/(8/9)  = (2/3)*(9/8)  = 18/24 = 3/4   ...... and...... 

 

3^(-2) + 3^(-4) + 3^(-6) + ....+ 3^-(2n)  =  (1/9) / (1 - 3^(-2))  = (1/9)/ ( 1 - 1/9)  = (1/9)/(8/9) =

(1/9) * (9/8)  =  9/72  = 1/8

 

So .......  3/4 + 1/8  =  6/8 + 1/8 =  7/8

 

 

CPhill  Jun 8, 2015
 #2
avatar+91038 
0

Thanks Chris, I had not thought about doing it like that :)

Melody  Jun 8, 2015
 #3
avatar+91038 
+15
Best Answer

You got me thinking Chris :)

 

$$Express $0.\overline{21}_3$ as a base 10 fraction in reduced form.$$

 

$$21_3=2*3+1=7$$

 

So we have here a sum

 

    $$\\0.\overline{21}_3=\frac{7}{3^2}+\frac{7}{3^4}+\frac{7}{3^6}+\frac{7}{3^8}+...\\\\
$This is the infinite sum of a GP$\\\\
a=\frac{7}{9}\qquad r=\frac{1}{9}\\\\
S_{\infty}=\frac{a}{1-r}}\\\\
S_{\infty}=\frac{\frac{7}{9}}{1-\frac{1}{9}}}\\\\
S_{\infty}=\frac{7}{9}\div \frac{8}{9}}\\\\
S_{\infty}=\frac{7}{9}\times \frac{9}{8}}\\\\
S_{\infty}=\frac{7}{8}\\\\$$

Melody  Jun 8, 2015
 #4
avatar+78643 
0

Yeah, Melody......I like yours better........we don't have to split the sums that way.......

 

 

CPhill  Jun 8, 2015

18 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details