You got me thinking Chris :)
$$Express $0.\overline{21}_3$ as a base 10 fraction in reduced form.$$
$$21_3=2*3+1=7$$
So we have here a sum
$$\\0.\overline{21}_3=\frac{7}{3^2}+\frac{7}{3^4}+\frac{7}{3^6}+\frac{7}{3^8}+...\\\\
$This is the infinite sum of a GP$\\\\
a=\frac{7}{9}\qquad r=\frac{1}{9}\\\\
S_{\infty}=\frac{a}{1-r}}\\\\
S_{\infty}=\frac{\frac{7}{9}}{1-\frac{1}{9}}}\\\\
S_{\infty}=\frac{7}{9}\div \frac{8}{9}}\\\\
S_{\infty}=\frac{7}{9}\times \frac{9}{8}}\\\\
S_{\infty}=\frac{7}{8}\\\\$$
We have two sums to consider.....
2*3^(-1) + 2*3^(-3) + 2*3^(-5)+ ....+2*3^-(2n-1) = (2/3) /(1 - 3^(-2)) = (2/3) / (1 - 1/9) =
(2/3)/(8/9) = (2/3)*(9/8) = 18/24 = 3/4 ...... and......
3^(-2) + 3^(-4) + 3^(-6) + ....+ 3^-(2n) = (1/9) / (1 - 3^(-2)) = (1/9)/ ( 1 - 1/9) = (1/9)/(8/9) =
(1/9) * (9/8) = 9/72 = 1/8
So ....... 3/4 + 1/8 = 6/8 + 1/8 = 7/8
You got me thinking Chris :)
$$Express $0.\overline{21}_3$ as a base 10 fraction in reduced form.$$
$$21_3=2*3+1=7$$
So we have here a sum
$$\\0.\overline{21}_3=\frac{7}{3^2}+\frac{7}{3^4}+\frac{7}{3^6}+\frac{7}{3^8}+...\\\\
$This is the infinite sum of a GP$\\\\
a=\frac{7}{9}\qquad r=\frac{1}{9}\\\\
S_{\infty}=\frac{a}{1-r}}\\\\
S_{\infty}=\frac{\frac{7}{9}}{1-\frac{1}{9}}}\\\\
S_{\infty}=\frac{7}{9}\div \frac{8}{9}}\\\\
S_{\infty}=\frac{7}{9}\times \frac{9}{8}}\\\\
S_{\infty}=\frac{7}{8}\\\\$$