+0  
 
0
375
4
avatar+644 

Express 1/1+/1/1-1/1+i in the form a+bi where a and b are real numbers.

waffles  Oct 28, 2017
 #1
avatar+93691 
+1

Express 1/1+/1/1-1/1+i in the form a+bi where a and b are real numbers.

 

What is 1+/1 supposed to mean?

Your question makes no sense.

Melody  Oct 28, 2017
 #2
avatar+644 
0

Sorry if that didnt make any sense, here try this 1/(1+1/(1-1/(1-i)))

waffles  Oct 29, 2017
 #3
avatar
+1

Simplify the following:
1/(1/(1 - 1/(-i + 1)) + 1)

 

Multiply numerator and denominator of (-1)/(-i + 1) by 1 + i:
1/(1/((-(i + 1))/((-i + 1) (i + 1)) + 1) + 1)

(-i + 1) (i + 1) = 1×1 + 1 i - i×1 - i×i = 1 + i - i + 1 = 2:
1/(1/(1 - ((i + 1))/2) + 1)

 

Put each term in 1 - (i + 1)/2 over the common denominator 2: 1 - (i + 1)/2 = 2/2 - (i + 1)/2:
1/(1/(2/2 + (-i - 1)/2) + 1)

Factor -1 from -i - 1:
1/(1/(2/2 + (-(i + 1))/2) + 1)

2/2 - (i + 1)/2 = (2 + (-i - 1))/2:
1/(1/((2 - 1 - i)/2) + 1)

 

Multiply the numerator of 1/((2 - 1 - i)/2) by the reciprocal of the denominator. 1/((2 - 1 - i)/2) = (1×2)/(2 - 1 - i):
1/(2/(2 - 1 - i) + 1)

2 - 1 - i = (2 - 1) - i = 1 - i:
1/(2/(-i + 1) + 1)

 

Multiply numerator and denominator of 2/(-i + 1) by 1 + i:
1/((2 (i + 1))/((-i + 1) (i + 1)) + 1)

(-i + 1) (i + 1) = 1×1 + 1 i - i×1 - i×i = 1 + i - i + 1 = 2:
1/((2 (i + 1))/2 + 1)

(2 (i + 1))/2 = 2/2×(i + 1) = i + 1:
1/(i + 1 + 1)

1 + i + 1 = (1 + 1) + i = 2 + i:
1/(i + 2)

 

Multiply numerator and denominator of 1/(i + 2) by 2 - i:
(-i + 2)/((i + 2) (-i + 2))

(i + 2) (-i + 2) = 2×2 + 2 (-i) + i×2 + i (-i) = 4 - 2 i + 2 i + 1 = 5:
(-i + 2)/5

Guest Oct 29, 2017
 #4
avatar+20033 
+1

Express 1/(1+1/(1-1/(1-i))) in the form a+bi

where a and b are real numbers.

 

\(\begin{array}{|rcll|} \hline && \mathbf{\cfrac{1}{1+\cfrac{1}{1-\cfrac{1}{ 1-i }}}} \\\\ &=& \cfrac{1}{1+\cfrac{1}{\cfrac{1-i}{ 1-i }-\cfrac{1}{ 1-i }}} \\\\ &=& \cfrac{1}{1+\cfrac{1}{\cfrac{1-i-1}{ 1-i }}} \\\\ &=& \cfrac{1}{1+\cfrac{1-i}{ \not{1}-i-\not{1} }} \\\\ &=& \cfrac{1}{1+\cfrac{1-i}{ -i} } \\\\ &=& \cfrac{1}{\cfrac{-i}{-i}+\cfrac{1-i}{-i} } \\\\ &=& \cfrac{1}{\cfrac{-i+1-i}{-i} } \\\\ &=& \dfrac{-i}{-i+1-i} \\\\ &=& \dfrac{-i}{1-2i} \\\\ &=& \left(\dfrac{-i}{1-2i} \right) \cdot \left( \dfrac{1+2i}{1+2i} \right) \\\\ &=& \dfrac{-i(1+2i)}{(1-2i)(1+2i)} \\\\ &=& \dfrac{-i-2i^2}{1-4i^2} \quad & | \quad i^2 = -1 \\\\ &=& \dfrac{-i-2(-1)}{1-4(-1)} \\\\ &=& \dfrac{-i+2}{1+4} \\\\ &=& \dfrac{-i+2}{5} \\\\ & \mathbf{=}& \mathbf{ \dfrac{2}{5}-\dfrac{1}{5}i } \\ \hline \end{array}\)

 

 

laugh

heureka  Oct 30, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.