+0  
 
0
298
1
avatar

(8/x-4) + (5/x^2 + 2x -24)

Guest Aug 8, 2017

Best Answer 

 #1
avatar+7339 
+3

Express     \(\frac8{x-4}+\frac5{x^2+2x-24}\)     as a single fraction.

 

 

    \( \frac8{x-4}+\frac5{x^2+2x-24} \)

                                                  Factor the denominator of the second fraction.

                                                  What two numbers add to  2  and multiply to  -24 ?→  +6  and  -4  .

=  \( \frac8{x-4}+\frac5{(x+6)(x-4)} \)

                                                  Multiply the first fraction by \( \frac{x+6}{x+6} \)  .

=  \( (\frac{x+6}{x+6})(\frac8{x-4})+\frac5{(x+6)(x-4)} \)

 

=  \( \frac{8x+48}{(x+6)(x-4)}+\frac5{(x+6)(x-4)} \)

                                                  Now there's a common denominator so we can add the fractions.

=  \( \frac{8x+48+5}{(x+6)(x-4)} \)

 

=  \( \frac{8x+53}{(x+6)(x-4)} \)

hectictar  Aug 8, 2017
 #1
avatar+7339 
+3
Best Answer

Express     \(\frac8{x-4}+\frac5{x^2+2x-24}\)     as a single fraction.

 

 

    \( \frac8{x-4}+\frac5{x^2+2x-24} \)

                                                  Factor the denominator of the second fraction.

                                                  What two numbers add to  2  and multiply to  -24 ?→  +6  and  -4  .

=  \( \frac8{x-4}+\frac5{(x+6)(x-4)} \)

                                                  Multiply the first fraction by \( \frac{x+6}{x+6} \)  .

=  \( (\frac{x+6}{x+6})(\frac8{x-4})+\frac5{(x+6)(x-4)} \)

 

=  \( \frac{8x+48}{(x+6)(x-4)}+\frac5{(x+6)(x-4)} \)

                                                  Now there's a common denominator so we can add the fractions.

=  \( \frac{8x+48+5}{(x+6)(x-4)} \)

 

=  \( \frac{8x+53}{(x+6)(x-4)} \)

hectictar  Aug 8, 2017

15 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.