Express \(\frac8{x-4}+\frac5{x^2+2x-24}\) as a single fraction.
\( \frac8{x-4}+\frac5{x^2+2x-24} \)
Factor the denominator of the second fraction.
What two numbers add to 2 and multiply to -24 ?→ +6 and -4 .
= \( \frac8{x-4}+\frac5{(x+6)(x-4)} \)
Multiply the first fraction by \( \frac{x+6}{x+6} \) .
= \( (\frac{x+6}{x+6})(\frac8{x-4})+\frac5{(x+6)(x-4)} \)
= \( \frac{8x+48}{(x+6)(x-4)}+\frac5{(x+6)(x-4)} \)
Now there's a common denominator so we can add the fractions.
= \( \frac{8x+48+5}{(x+6)(x-4)} \)
= \( \frac{8x+53}{(x+6)(x-4)} \)
Express \(\frac8{x-4}+\frac5{x^2+2x-24}\) as a single fraction.
\( \frac8{x-4}+\frac5{x^2+2x-24} \)
Factor the denominator of the second fraction.
What two numbers add to 2 and multiply to -24 ?→ +6 and -4 .
= \( \frac8{x-4}+\frac5{(x+6)(x-4)} \)
Multiply the first fraction by \( \frac{x+6}{x+6} \) .
= \( (\frac{x+6}{x+6})(\frac8{x-4})+\frac5{(x+6)(x-4)} \)
= \( \frac{8x+48}{(x+6)(x-4)}+\frac5{(x+6)(x-4)} \)
Now there's a common denominator so we can add the fractions.
= \( \frac{8x+48+5}{(x+6)(x-4)} \)
= \( \frac{8x+53}{(x+6)(x-4)} \)