+0  
 
0
603
1
avatar+80 

The volume of a cone is given by the formula \(V = \frac{1}{3}Bh\), where B is the area of the base and h is the height. The area of the base of a cone is 30 square units, and its height is 6.5 units. What is the number of cubic units in its volume?

 

 

 

What is the value of \(1-2x+3x^2-4+5x-6x^2+7-8x+9x^2\) in terms of x? Express your answer in the form \(ax^2\)+bx+c, where a, b, and c are numbers.

 Jul 17, 2020
edited by Unicornrabbit  Jul 17, 2020
 #1
avatar
0

 

First one, just do the multiplication   (1/3)(30 units2)(6.5 units)  =  65 units3  

 

 

Second one, just add up like terms:  

 

                   +3x2     –2x     +1    

                   –6x2     +5x     –4    

                   +9x2     –8x     +7  

                  ——–   ––––   –––    

Totals          +6x2     –5x     +4    so the answer is 6x2 – 5x + 4   

.

 Jul 17, 2020

2 Online Users

avatar