We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
138
1
avatar+701 

extranous math 

http://prntscr.com/l0kgx8

 Sep 30, 2018
 #1
avatar+4775 
0

 

\(x+2 = \sqrt{3x+10} \\ (x+2)^2 = 3x + 10 \\ x^2 + 4x+4 = 3x + 10 \\ x^2 + x -6 = 0 \\ (x+3)(x-2) = 0 \\ x = -3, 2 \\ \text{however }\dots \text{when we plug these back in to check the solutions} \)

 

\(-3+2 \overset{?}{=} \sqrt{3(-3) + 10} \\ -1 \overset{?}{=} \sqrt{\text{of anything}} \\ \text{over the real numbers... no} \\ \\ 2+2 \overset{?}{=} \sqrt{3(2) + 10} \\ 4 \overset{?}{=} \sqrt{16} \\ \text{yes}\)

 

\(\text{So we see that x=-3 is an extraneous solution}\\ \text{arising because we squared things in order to solve the original equation} \\ \\ \text{the range of the square root function is only non-negative reals} \\ \text{and thus we need to be careful and check solutions whenever we square things to solve an equation}\)

.
 Sep 30, 2018

7 Online Users

avatar