We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
196
10
avatar+1626 

First row:          1

Second row:   2 , 3

Third Row:    4 , 5 , 6

Fourth row: 7 , 8 , 9 , 10

 

What is the sum of the numbers in row 2019?

 

-\(tommarvoloriddle\)

EDIT

What I tried:

 

Using Formulas (like finding the terms one and the arithmetic sequences one... my teacher said it was wrong... lol...)

eating grapes

 

Why I need you to show work:

 

So I can understand, both the problem and the solution.

 

WARNING:

only answer the question if you are fine with getting badgered by a confused person(me).

 Jul 11, 2019
edited by tommarvoloriddle  Jul 11, 2019
edited by tommarvoloriddle  Jul 11, 2019
 #1
avatar
+3

This pyramid has the following "closed form":

1/2[n^3 + n], where n = row number

1/2[2019^3 + 2019] =4,115,087,439

 Jul 11, 2019
edited by Guest  Jul 11, 2019
edited by Guest  Jul 11, 2019
 #7
avatar+1626 
+1

Thank you so much!

tommarvoloriddle  Jul 11, 2019
 #10
avatar+1626 
+1

But why to the third power? can you explain? plssssssssssssss

tommarvoloriddle  Jul 11, 2019
 #2
avatar+104704 
+5

Look   at   the last number in each row  and notice this pattern

               1     =     sum of the 1st positive integer

                  3   =    sum of the first two positive integers

                     6 =    sum of the first three positive integers

                        10  =  sum of the first 4 positive integers

 

So.....the last entry in the nth row apears to be just the sum of the 1st  n positive integers

 

And the sum of the first n positive integers is just   :  n (n + 1)   /2

 

So....the last entry  in  the 2019th row is the sum of the first 2019 positive integers  = 

 

(2019) (2020)  / 2  =   2039190

 

And the nth row contains n integers...so....

 

We will have 2019  integers in this row and we need to find the first one....

 

Note that, after the first row....the first entry on any row is given by  :

 

Last entry  - row number + 1 

 

So...the first entry on the 2019th row must be :  2039190 - 2019 + 1  = 2037172

 

So...finally....the sum of the terms in the 2019th row is given by

 

[ first entry + last entry ] * number of terms / 2  =

 

[2037172 + 2039190 ] * [ 2019] / 2  = 

 

4,115,087,439

 

 

cool cool cool

 Jul 11, 2019
 #6
avatar+1626 
+1

Thx so much!

tommarvoloriddle  Jul 11, 2019
 #3
avatar+104704 
+5

To generate a "closed" form solution that the Guest found......, we can use something known as the " sum of differences"

 

We have the following  sequence of row sums

 

1      5       15     34      65       111    take the positive difference between terms until we get a "constant" row

    4      10     19     31        46

         6       9      12     15

              3      3       3

 

It took us three  rows of differences to get to a "constant" row

This means that we will have a cubic (3rd power) "generating" polynomial  of the form

 

an^3  + bn^2  + cn + d = S(n)         where n is the row  number and S(n) is the row sum

 

So...we have this system of  equations 

a(1)^3 + b(1)^2 + c(1) + d  = 1

a(2)^3 + b(2)^2 + c(2) + d = 5

a(3)^3 + b(3)^2 + c(3) + d  = 15

a(4)^3  + b(4)^2 + c(4) + d  = 34   which gives us

 

a  +  b  +  c  + d   =   1

8a  + 4b + 2c + d  = 5

27a + 9b + 3c + d  = 15

64a + 16b + 4c + d  = 34

 

I'll  spare you the gory details of solving this by hand  [ but...I can go through it...if you want to ]

 

The solutions  are   a = 1/2, b = 0, c = 1/2   d = 0

 

So....the polynomial that generates the sum of any nth row is given by

 

(1/2)n^3 + (1/2)n  =  S(n)

 

[ n^3 +  n ]

________    =   S(n)

      2

 

Just as the "Guest" found!!!

 

 

cool cool cool

 Jul 11, 2019
edited by CPhill  Jul 11, 2019
 #4
avatar+1626 
+1

Thx!

tommarvoloriddle  Jul 11, 2019
 #5
avatar+1626 
+1

Thx! so much

tommarvoloriddle  Jul 11, 2019
edited by tommarvoloriddle  Jul 11, 2019
 #8
avatar+23277 
+5

What is the sum of the numbers in row 2019?

 

\(\begin{array}{|lccccccc|} \hline \text{First row}: & & & &1 \\ \text{Second row}: & & &2 &, &3 \\ \text{Third Row}: & &4 &, &5 &, &6 \\ \text{Fourth row}: & 7 &, &8 &, &9 &, &10 \\ \hline \end{array}\)

 

 

\(\begin{array}{|l|ccccccccc|lcr|} \hline \text{row}& & & & & & & & & & &&\text{sum} \\ \hline 1 & & & & &1 & & & & & &=&1 \\ 2 & & & &\color{red}2 &, &\color{green}3 & & & & \left(\dfrac{2+3}{2}\right) \cdot 2 &=& 5 \\ 3 & & &\color{red}4 &, &5 &, &\color{green}6 & & & \left(\dfrac{4+6}{2}\right) \cdot 3 &=& 15 \\ 4 & & \color{red}7 &, &8 &, &9 &, &\color{green}10 & & \left(\dfrac{7+10}{2}\right) \cdot 4 &=& 34 \\ 5 & \color{red}11& , &12 &, &13 &, &14 &, &\color{green}15 & \left(\dfrac{11+15}{2}\right) \cdot 5 &=& 65 \\ \vdots & & & & &\vdots & & & & & \\ 2019 & & & & & a,\ldots ,b & & & & & \left(\dfrac{a+b}{2}\right) \cdot 2019 &=& \ ? \\ \hline n & & & & & a_n,\ldots ,b_n & & & & & \left(\dfrac{a_n+b_n}{2}\right) \cdot n &=& s_n \\ \hline \end{array}\)

 

\(\mathbf{a_n=\ ?}\)
\(\begin{array}{|lcccccccccc|} \hline \text{First row}: & d_1=1 & &2 & &4 & &7 & & 11 & \ldots \\ \text{Second Row}: & &d_2=1 & &2 & &3 & &4 & \ldots \\ \text{Third row}: & & &d_3=1 & &1 & & 1& \ldots \\ \hline \end{array}\)

\(\begin{array}{lcl} a_n &=& \dbinom{n-1}{0}\cdot d_1 + \dbinom{n-1}{1}\cdot d_2 + \dbinom{n-2}{2}\cdot d_3 \\\\ &=& \dbinom{n-1}{0}\cdot 1 + \dbinom{n-1}{1}\cdot 1 + \dbinom{n-2}{2}\cdot 1 \\\\ &=& 1 + (n-1)\cdot 1 + \dfrac{(n-2)(n-1)}{2\cdot 1}\cdot 1 \\\\ &=& 1 + n-1 + \dfrac{(n-2)(n-1)}{2} \\\\ \mathbf{a_n} &=& \mathbf{n +\dfrac{(n-2)(n-1)}{2}} \\ \end{array}\)

 

\(\mathbf{b_n=\ ?}\)

\(\begin{array}{|lcccccccccc|} \hline \text{First row}: & d_1=1 & &3 & &6 & &10 & & 15 & \ldots \\ \text{Second Row}: & &d_2=2 & &3 & &4 & &5 & \ldots \\ \text{Third row}: & & &d_3=1 & &1 & & 1& \ldots \\ \hline \end{array}\)

\(\begin{array}{lcl} b_n &=& \dbinom{n-1}{0}\cdot d_1 + \dbinom{n-1}{1}\cdot d_2 + \dbinom{n-2}{2}\cdot d_3 \\\\ &=& \dbinom{n-1}{0}\cdot 1 + \dbinom{n-1}{1}\cdot 2 + \dbinom{n-2}{2}\cdot 1 \\\\ &=& 1 + (n-1)\cdot 2 + \dfrac{(n-2)(n-1)}{2\cdot 1}\cdot 1 \\\\ &=& 1 + 2n-2 + \dfrac{(n-2)(n-1)}{2} \\\\ \mathbf{b_n} &=& \mathbf{2n-1 +\dfrac{(n-2)(n-1)}{2}} \\ \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline s_n &=& \left(\dfrac{a_n+b_n}{2}\right) \cdot n \\\\ &=& \left(\dfrac{n +\dfrac{(n-2)(n-1)}{2}+2n-1 +\dfrac{(n-2)(n-1)}{2}}{2}\right) \cdot n \\\\ &=& \left(\dfrac{3n-1 + (n-2)(n-1)}{2} \right) \cdot n \\\\ &=& \left(\dfrac{3n-1 + n^2-3n+2}{2} \right) \cdot n \\\\ \mathbf{s_n} &=& \mathbf{\left(\dfrac{ n^2+1}{2} \right) \cdot n} \\ \hline \end{array}\)

 

The sum of the numbers in row 2019

\(\begin{array}{|rcll|} \hline \mathbf{s_n} &=& \mathbf{\left(\dfrac{ n^2+1}{2} \right) \cdot n} \\\\ s_{2019} &=& \left(\dfrac{ 2019^2+1}{2} \right) \cdot 2019 \\\\ s_{2019} &=& 2038181 \cdot 2019 \\\\ \mathbf{s_{2019}} &=& \mathbf{4115087439} \\ \hline \end{array}\)

 

laugh

 Jul 11, 2019
edited by heureka  Jul 11, 2019
 #9
avatar+1626 
+6

Thank you- You really didn't have to multiply that out, did you?

tommarvoloriddle  Jul 11, 2019

29 Online Users

avatar
avatar