+0  
 
0
429
1
avatar

F(x)=3x+7 even odd or neither determine algebraically

Guest Sep 29, 2014

Best Answer 

 #1
avatar+17744 
+5

A function is an "even" function if  f(x) = f(-x)  for all values of x.

A function is an "odd" function if  f(-x) = -f(x) for all values of x.

 

Choose a value for x; 2 is OK:

f(2)  =  3(2) + 7  =  13                                 --->  -f(2)  =  -13

f(-2) =  3(-2) + 7  =  1

Since  f(2) ≠ f(-2), it can't be even.

Since  f(-2) ≠ -f(2), it can't be odd.

geno3141  Sep 29, 2014
 #1
avatar+17744 
+5
Best Answer

A function is an "even" function if  f(x) = f(-x)  for all values of x.

A function is an "odd" function if  f(-x) = -f(x) for all values of x.

 

Choose a value for x; 2 is OK:

f(2)  =  3(2) + 7  =  13                                 --->  -f(2)  =  -13

f(-2) =  3(-2) + 7  =  1

Since  f(2) ≠ f(-2), it can't be even.

Since  f(-2) ≠ -f(2), it can't be odd.

geno3141  Sep 29, 2014

17 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.